Time-course HoxB4 ChIP-Seq during HSC development from ES cells
Ontology highlight
ABSTRACT: Efficient in vitro generation of hematopoietic stem cells (HSCs) from embryonic stem cells (ESCs) holds great promise for cell-based therapies of hematological diseases. To date, HoxB4 remains to be the most effective transcription factor (TF) whose over-expression in ESCs confers long-term repopulating ability to ESC-derived HSCs. Despite its importance, the components and dynamics of the HoxB4 transcriptional regulatory network is poorly understood, hindering efforts to develop a more efficient protocol for in vitro derivation of HSCs. Towards this goal, we performed global gene expression profiling and chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq) at four stages of the HoxB4-mediated HSC development. Joint analyses of ChIP-Seq and gene expression profiles unveil a number of global features of the HoxB4 regulatory network.
ORGANISM(S): Mus musculus
PROVIDER: GSE34013 | GEO | 2012/03/23
SECONDARY ACCESSION(S): PRJNA156455
REPOSITORIES: GEO
ACCESS DATA