Project description:Aneuploidy--the state of having uneven numbers of chromosomes--is a hallmark of cancer and a feature identified in yeast from diverse habitats. Recent studies have shown that aneuploidy is a form of large-effect mutation that is able to confer adaptive phenotypes under diverse stress conditions. Here we investigate whether pleiotropic stress could induce aneuploidy in budding yeast (Saccharomyces cerevisae). We show that whereas diverse stress conditions can induce an increase in chromosome instability, proteotoxic stress, caused by transient Hsp90 (also known as Hsp82 or Hsc82) inhibition or heat shock, markedly increased chromosome instability to produce a cell population with high karyotype diversity. The induced chromosome instability is linked to an evolutionarily conserved role for the Hsp90 chaperone complex in kinetochore assembly. Continued growth in the presence of an Hsp90 inhibitor resulted in the emergence of drug-resistant colonies with chromosome XV gain. This drug-resistance phenotype is a quantitative trait involving copy number increases of at least two genes located on chromosome XV. Short-term exposure to Hsp90 stress potentiated fast adaptation to unrelated cytotoxic compounds by means of different aneuploid chromosome stoichiometries. These findings demonstrate that aneuploidy is a form of stress-inducible mutation in eukaryotes, capable of fuelling rapid phenotypic evolution and drug resistance, and reveal a new role for Hsp90 in regulating the emergence of adaptive traits under stress.
Project description:This SuperSeries is composed of the following subset Series: GSE34085: Karyotype analysis of radicicol-resistant yeast colonies by array CGH (Radr1,2,3) GSE34086: Genome structure of radicicol-induced aneuploids in yeast by array CGH Refer to individual Series
Project description:Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.
Project description:Aneuploidy, which refers to unbalanced chromosome numbers, represents a class of genetic variation that is associated with cancer, birth defects and eukaryotic micro-organisms1-4. Whereas it is known that each aneuploid chromosome stoichiometry can give rise to a distinct pattern of gene expression and phenotypic profile4,5, it remains a fundamental question as to whether there are common cellular defects that are associated with aneuploidy. Here we show the existence in budding yeast of a common aneuploidy gene-expression signature that is suggestive of hypo-osmotic stress, using a strategy that enables the observation of common transcriptome changes of aneuploidy by averaging out karyotype-specific dosage effects in aneuploid yeast-cell populations with random and diverse chromosome stoichiometry. Consistently, aneuploid yeast exhibited increased plasma-membrane stress that led to impaired endocytosis, and this defect was also observed in aneuploid human cells. Thermodynamic modelling showed that hypo-osmotic-like stress is a general outcome of the proteome imbalance that is caused by aneuploidy, and also predicted a relationship between ploidy and cell size that was observed in yeast and aneuploid cancer cells. A genome-wide screen uncovered a general dependency of aneuploid cells on a pathway of ubiquitin-mediated endocytic recycling of nutrient transporters. Loss of this pathway, coupled with the endocytic defect inherent to aneuploidy, leads to a marked alteration of intracellular nutrient homeostasis.
Project description:Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.
Project description:Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question whether this unusual somatic genetic variation evolved as an adaptive mechanism to hepatic injury. According to this model, hepatotoxic insults would select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to the injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in homogentisic acid dioxygenase (Hgd), located on chromosome 16. Loss of this allele can protect from fumarylacetoacetate hydrolase (Fah) deficiency. When adult Hgd+/- Fah-/- mice were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was ~50%. This result provides proof-of-principle that the selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans is under investigation. 8 mouse hepatocyte samples were analyzed. Genomic DNA samples were derived from wild type mice (2), Hgd-/- Fah-/- mice off NTBC (2) and Hgd+/- Fah-/- off NTBC (4). Samples were compared to sex-mismatched reference genomic DNA isolated from wild type mouse splenocytes.
Project description:The physiological role of mesenchymal stem cells (MSCs) is to provide a source of cells to replace mesenchymal-derivatives in stromal tissues with high cell turnover or following stromal tissue damage to elicit repair. Human MSCs have been shown to suppress in vitro T-cell responses via a number of mechanisms including indoleamine 2,3-dioxygenase (IDO). This immunomodulatory capacity is likely to be related to their in vivo function in tissue repair where local, transient suppression of immune responses would benefit differentiation. Further understanding of the impact of locally modulated immune responses by MSCs is hampered by evidence that IDO is not produced or utilized by mouse MSCs. In this study, we demonstrate that IDO-mediated tryptophan starvation triggered by human MSCs inhibits T-cell activation and proliferation through induction of cellular stress. Significantly, we show that despite utilizing different means, immunomodulation of murine T-cells also involves cellular stress and thus is a common strategy of immunoregulation conserved between mouse and humans.
Project description:Upregulation of SESTRIN 2 (SESN2) has been reported in response to diverse cellular stresses. In this study we demonstrate SESTRIN 2 induction following endoplasmic reticulum (ER) stress. ER stress-induced increases in SESTRIN 2 expression were dependent on both PERK and IRE1/XBP1 arms of the unfolded protein response (UPR). SESTRIN 2 induction, post ER stress, was responsible for mTORC1 inactivation and contributed to autophagy induction. Conversely, knockdown of SESTRIN 2 prolonged mTORC1 signaling, repressed autophagy and increased ER stress-induced cell death. Unexpectedly, the increase in ER stress-induced cell death was not linked to autophagy inhibition. Analysis of UPR pathways identified prolonged eIF2?, ATF4 and CHOP signaling in SESTRIN 2 knockdown cells following ER stress. SESTRIN 2 regulation enables UPR derived signals to indirectly control mTORC1 activity shutting down protein translation thus preventing further exacerbation of ER stress.
Project description:Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.
Project description:Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.