The methylome of Drosophila melanogaster
Ontology highlight
ABSTRACT: Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: methylcytosine has been detected at very low levels in early embryos, but the genomic location and function of methylation has not been established. We have mapped cytosine methylation genomewide in Stage 5 Drosophila embryo DNA by combining immuno-enrichment for 5-methylcytosine, bisulfite conversion, and deep sequencing. Unlike methylation patterns observed in other eukaryotic species, methylation in Drosophila is punctate and highly strand-asymmetrical; we confirmed this by direct PCR amplification and sequencing of bisulfite-converted DNA. Despite the locally asymmetric nature of methylation, large-scale patterns of methylation are symmetric. Methylated regions make up ~1% of the genome, and within these regions methylation of individual cytosines averages 2-10%. Methylation is concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. It is depleted from promoters, coding sequences, and most retrotransposons, and enriched in introns and in certain simple sequence repeats containing the commonly methylated motifs. Comparison with available gene expression data indicates that methylation in a gene is associated with lower expression; the X chromosome, which is subject to gene dosage compensation, is more densely methylated than the autosomes. This study firmly establishes the presence of cytosine methylation in Drosophila; the temporal overlap of methylation with the maternal-zygotic transition raises the possibility that methylation participates in the transition to zygotic gene expression.
ORGANISM(S): Lambdavirus lambda Drosophila melanogaster
PROVIDER: GSE34425 | GEO | 2014/02/18
SECONDARY ACCESSION(S): PRJNA149555
REPOSITORIES: GEO
ACCESS DATA