Pathway simulations in common oncogenic drivers of leukemic and rhabdomyosarcomatic cells: a systems biology approach
Ontology highlight
ABSTRACT: A part of current research has intensively been focused on the proliferation and metabolic processes governing biological systems. Since the advent of high throughput methodologies like microarrays, the load of genomic data has increased geometrically and along with that the need for computational methods which will interpret these data. In the present work we study in vitro the common proliferation and metabolic processes, which are combined to the common oncogenic pathways, as far as gene expression is concerned, between the T-cell acute lymphoblastic leukemia (CCRF-CEM) and the rhabdomyosarcoma (TE-671) cell lines. We present a computational approach, using cDNA microarrays, in order to identify commonalities between diverse biological systems. Our analysis predicted that JAK1, STAT1, PIAS2 and CDK4 are the driving forces in the two cell lines. This type of analysis can lead to the understanding of the common mechanisms that transform physiological cells to malignant, as well as it reveals a new holistic way to understandthe the dynamics of tumor onset as well as the mechanistics of oncogenic drivers.
ORGANISM(S): Homo sapiens
PROVIDER: GSE34522 | GEO | 2011/12/20
SECONDARY ACCESSION(S): PRJNA151399
REPOSITORIES: GEO
ACCESS DATA