Project description:In order to provide information about the gene expression response that occurs when cells experience a change in carbon source, succinate limited chemostat cultures of Methylobacterium extorquens AM1 were grown to and maintained at an OD of ~0.63, transferred to flasks and methanol was added. Cells were harvested for RNA extraction at time: 0 min, 10 min, 30 min, 1 hr, 2 hr, 4 hr and 6 hr post transition. At 30 min, a no methanol addition sample was extracted as a carbon starvation control. These data were used in conjunction with flux, enzymatic and metabolite measurements to assess the changes in central metabolism during this transition. Abstract from manuscript: When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate to methanol growth by the methylotrophic bacterium Methylobacterium extorquens, analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylenetetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints.
Project description:Differential analysis of Methylobacterium extorquens DM4 in methanol versus dichloromethane condition using shotgun label free MS1 quantification approach
Project description:In order to provide information about the gene expression response that occurs when cells experience a change in carbon source, succinate limited chemostat cultures of Methylobacterium extorquens AM1 were grown to and maintained at an OD of ~0.63, transferred to flasks and methanol was added. Cells were harvested for RNA extraction at time: 0 min, 10 min, 30 min, 1 hr, 2 hr, 4 hr and 6 hr post transition. At 30 min, a no methanol addition sample was extracted as a carbon starvation control. These data were used in conjunction with flux, enzymatic and metabolite measurements to assess the changes in central metabolism during this transition. Abstract from manuscript: When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate to methanol growth by the methylotrophic bacterium Methylobacterium extorquens, analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylenetetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Gene expression in succinate limited chemostat cultures was compared to gene expression in cells transferred to flasks before and after methanol addition. As a control, a time = 0 sample (RNA prepared from cells harvested directly from the chemostat) was compared to a time = 0 sample immediately obtained after the cells were transferred to flasks, before methanol was added in order to identify changes due to flask transfer. A carbon starvation control was also done comparing expression from time = 0 (chemostat cells) to cells transferred to flasks for 30 min with no carbon source added. Two biological replicates each with two techinal replicates (dye swap) were analyzed for time = 0 (chemostat) vs 10 min, 30 min, 1 hr and 2 hr after methanol addition. One biological replicate with two technical replicates (dye swap) were analyzed for time = 0 (chemostat) vs time = 0 (flask transfer), and time = 0 (chemostat) vs time = 4 hr, 6 hr and 30 min no methanol addition.
Project description:Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply on-going demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol-induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5x by alleviating protein folding stress. Removal of methanol from the production process enabled scale up to a 1,200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.
Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat. 2 color experiment in reference design. Pichia pastoris reference mix [mixed pool of Pichia pastoris cells sampled from various conditions including cells grown on glycerine, glucose and methanol, on full andminimal medium, in stationary and exponential growth phase, and in different stress states]
Project description:Raw LC-MS/MS data of crude extract of Methylobacterium sp. Leaf119. Included are .mzml and .raw files for a 12C-methanol blank, 13C-methanol blank, 13C-methanol plus 12C-PABA, 13C-methanol plus methionine, and 13C-methanol plus both PABA and methionine.
Project description:Raw LC-MS/MS data of crude extract of Methylobacterium sp. Leaf119. Included are .mzml and .raw files for a 12C-methanol blank, 13C-methanol blank, 13C-methanol plus 12C-PABA, 13C-methanol plus methionine, 13C-methanol plus both PABA and methionine, and 12C-methanol plus deuterated methionine (methyl-D3).