Distinct Gene Expression Profiles in Adult Mouse Heart Following Targeted MAP Kinase Activation
Ontology highlight
ABSTRACT: Three major MAP kinase signaling cascades, ERK, p38 and JNK, play significant roles in the development of cardiac hypertrophy and heart failure in response to external stress and neural/hormonal stimuli. In order to study the specific function of each MAP kinase branch in adult heart, we have generated three transgenic mouse models with cardiac specific and temporally regulated expression of activated mutants of Ras, MKK3 and MKK7, which are selective upstream activators for ERK, p38 and JNK, respectively. Gene expression profiles in transgenic adult hearts were determined using cDNA microarrays at both early (4-7 days) and late (2-4 weeks) time points following transgene induction. From this study, we revealed common changes in gene expression among the three models, particularly involving extracellular matrix remodeling. However, distinct expression patterns characteristic for each pathway were also identified in cell signaling, growth and physiology. In addition, genes with dynamic expression differences between early vs. late stages illustrated primary vs. secondary changes upon MAP kinase activation in adult hearts. These results provide an overview to both short term and long term effects of MAP kinase activation in heart and support some common as well as unique roles for each MAP kinase cascade in the development of heart failure. Keywords: MAP Kinase induction comparison, time course
Project description:Three major MAP kinase signaling cascades, ERK, p38 and JNK, play significant roles in the development of cardiac hypertrophy and heart failure in response to external stress and neural/hormonal stimuli. In order to study the specific function of each MAP kinase branch in adult heart, we have generated three transgenic mouse models with cardiac specific and temporally regulated expression of activated mutants of Ras, MKK3 and MKK7, which are selective upstream activators for ERK, p38 and JNK, respectively. Gene expression profiles in transgenic adult hearts were determined using cDNA microarrays at both early (4-7 days) and late (2-4 weeks) time points following transgene induction. From this study, we revealed common changes in gene expression among the three models, particularly involving extracellular matrix remodeling. However, distinct expression patterns characteristic for each pathway were also identified in cell signaling, growth and physiology. In addition, genes with dynamic expression differences between early vs. late stages illustrated primary vs. secondary changes upon MAP kinase activation in adult hearts. These results provide an overview to both short term and long term effects of MAP kinase activation in heart and support some common as well as unique roles for each MAP kinase cascade in the development of heart failure. Experiment Overall Design:MHC-floxed-HRas-v12/MKK3bE/MKK7D transgenic mice were bred with MHC-Mer-Cre-Mer (MCM) mice (from Dr. J. Molkentin, Cincinnati Children's Hospital) to generate double transgenic animals harboring both floxed transgenes and Mer-Cre-Mer transgene. At 12 weeks of age the double transgenic mice and non-transgenic littermate controls were treated via i.p. injection of tamoxifen at a dosage of 20mg/kgBW once a day for 3 consecutive days as reported. The hearts were harvested at an early (4-7 days post first tamoxifen injection) and a late (2-4 weeks) time point. Left ventricles were dissected and rapidly frozen in liquid nitrogen and stored at -80C prior to protein and RNA analysis. Transcription profiling of
Project description:Bis-2-chloroethyl sulfide (sulfur mustard, SM) is a potent alkylating agent and vesicant. Exposure to SM results in activation of numerous signaling cascades, including mitogen-activated protein kinase (MAPK) signaling pathways. These pathways include the Erk, p38, and JNK pathways, which are involved in cell growth, inflammation, and stress signaling. However, the precise roles of these pathways in SM toxicity have not been fully elucidated. We used Western blotting and microarray analysis to examine the activation and role of each pathway following SM exposure in primary human epidermal keratinocytes. Western blotting revealed increased phosphorylation of p38 and JNK following SM exposure; however, phosphorylation of Erk was equivocal, suggesting that growth conditions may impact activation of Erk by SM. We used pharmacologic inhibitors to target each MAPK and then compared the gene expression profiles to identify SM-induced gene networks regulated by each MAPK. Cells were pretreated with 10 µM SB 203580 (p38 inhibitor), PD 98059 (Erk inhibitor), or SP 600125 (JNK inhibitor) 60 minutes before exposure to 200 µM SM. Cells were harvested at 1h, 4h, and 8h post-exposure, and RNA was extracted for synthesis of microarray probes. Probes were hybridized to Affymetrix U133 Plus 2.0 arrays for gene expression profiling. Analysis of variance was performed to identify genes significantly modulated due to pharmacologic inhibition in SM-exposed cells. Pathway mapping confirmed alterations in SM-induced Erk, JNK, and p38 MAPK signaling due to pharmacologic inhibition. SM-induced expression of IL-8, IL-6, and TNF-alpha was decreased by p38 MAPK inhibition, but not by inhibition of other MAPKs. Based on the number of significant pathways mapped to each MAPK in the presence and absence of inhibitors, the p38 MAPK pathway appeared to be the MAPK pathway most responsive to SM exposure. Interestingly, pathway mapping of the microarray data identified potential cross-talk between MAPK signaling pathways and other pathways involved in SM-induced signaling. Mining of these results will increase our understanding of the role of MAPK pathways in SM-induced signal transduction and may identify potential therapeutic targets for medical countermeasure development.
Project description:MAPK family members are known to phosphorylate the c-terminal tail of connexin43 (cx43), however little is known about the preference of different MAPKs for specific cx43 phosphorylation sites. We utilized mass spectrometry to determine the cx43 sites phosphorylated in kinase assays by Erk, JNK, and p38.
Project description:Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change the transcriptional profiles of affected cells. To define responses to two such pathways, p38 and ERK, we used SB203580 and PD98059 as specific inhibitors, and identified the regulated genes after 1, 4, 24 and 48 hrs, using Affymetrix’ Hu133Av2 microarrays. Additionally, we compared genes specifically regulated by p38 and ERKs with those regulated by JNK and by all three pathways simultaneously. We find that the p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes; the ERK pathway induces the expression of nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Both pathways promote epidermal differentiation and induce feedback inactivation of MAPK signaling. c-FOS, SRY and N-Myc appear to be the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are common to both. The results for the first time comprehensively define the genes regulated by the p38 and ERK pathways in epidermal keratinocytes and suggest a list of targets potentially useful in therapeutic interventions. Human epidermal keratinocytes are grown in Keratinocyte Serum-Free Medium (Gibco) supplemented with 0.05 mg/ml bovine pituitary extract, 2.5 ng/ml epidermal growth factor, 0.09 mM CalCl2 and 1% penicillin/streptomycin (KGM). They are switched to Keratinocyte Serum Free-Media (Gibco) supplemented only with 1% penicillin/streptomycin (KBM) 24 h prior to commencing experiments. A set is left as controls, others treated with 5 uM JNK inhibitor SP600125, 15 uM p38 inhibitor SB203580, or 50 um ERK inhibitor PD98059. Timecourse of treated and parellel control samples over a 48 hr period was performed.
Project description:TGF-beta plays multiple functions in a board range of cellular responses such as proliferation, differentiation, motility and survival by activating several cellular signaling pathways, including Smads and MAP kinases (Erk, JNK and p38). In particular, TGF-beta can activate pro- or anti-apoptotic signals depending on the target cells. We found that blockage of JNK activation sensitized mouse B lymphoma derived A20 cells to TGF-beta-induced apoptosis. These results suggest that TGF-beta activate JNK to inhibit the activation of death signal that is simultaneously activated by TGF-beta. We used microarrays to gain insight into the effects of JNK inhibition on gene expression in TGF-b-stimulated A20 cells and identified JNK-dependent TGF-beta inducible genes. Keywords: time course
Project description:To investigate the cooperative function ERK, JNK and p38 signaling in cell behavior decisions, we established MCF10A cell lines in which each target gene has been overexpressed by stable integration of a TRE3G (TET) inducible promoter driver the expression of each target gene. We then performed gene expression profiling analysis using data obtained from RNA-seq of 2 independent repliatse at 18 hours post induction.
Project description:Mitogen-activated protein kinases (MAPKs) regulate cardiomyocyte growth and apoptosis in response to extracellular stimulation, but the downstream effectors that mediate their pathophysiological effects remain poorly understood. We determined the targets and role of p38 MAPK in the heart in vivo by using local adenovirus-mediated gene transfer of constitutively active upstream kinase mitogen-activated protein kinase kinase 3b (MKK3bE) and wild-type p38α in rats. DNA microarray analysis of animals with cardiac-specific overexpression of p38 MAPK revealed that 264 genes were upregulated more than 2-fold including multiple genes controlling cell division, cell signaling, inflammation, adhesion and transcription. Several previously unknown p38 target genes were found. Using gel mobility shift assays we identified several cardiac transcription factors that were directly activated by p38 MAPK. Finally, we determined the functional significance of the altered cardiac gene expression profile by histological analysis and echocardiographic measurements, which indicated that p38 MAPK overexpression induced gene expression results in cell proliferation, myocardial inflammation and fibrosis. In conclusion, we defined the novel target genes and transcription factors as well as the functional effects of p38 MAPK in the heart. Expression profiling of p38 MAPK overexpression identified cell cycle regulatory and inflammatory genes critical for pathological processes in the adult heart. Experiment Overall Design: Left ventricular gene expression profiles three days after MKK3bE + WT p38α gene transfer were compared with those of Lac Z âtreated animals by screening Affymetrix Rat Expression Set 230_2.0 Arrays (there are 5 samples in both group).
Project description:Facioscapulohumoral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes, and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered widespread changes in protein phosphorylation rapidly following DUX4 induction indicating that alterations in kinase signaling may play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover JNK as a novel pathway involved in DUX4-mediated cell death as well as provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.
Project description:Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change the transcriptional profiles of affected cells. To define responses to two such pathways, p38 and ERK, we used SB203580 and PD98059 as specific inhibitors, and identified the regulated genes after 1, 4, 24 and 48 hrs, using Affymetrix’ Hu133Av2 microarrays. Additionally, we compared genes specifically regulated by p38 and ERKs with those regulated by JNK and by all three pathways simultaneously. We find that the p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes; the ERK pathway induces the expression of nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Both pathways promote epidermal differentiation and induce feedback inactivation of MAPK signaling. c-FOS, SRY and N-Myc appear to be the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are common to both. The results for the first time comprehensively define the genes regulated by the p38 and ERK pathways in epidermal keratinocytes and suggest a list of targets potentially useful in therapeutic interventions.
Project description:Analysis of MAP Kinase Signaling Molecules p38, JNK, and Erk in Sulfur Mustard Toxicity Using Pharmacological Inhibitors and Gene Expression Profiling