Histone/Protein Deacetylase-6, -9, and Sirtuin-1 Control Foxp3+ Treg Through Shared and Isotype-Specific Mechanisms
Ontology highlight
ABSTRACT: Targeting histone/protein deacetylase (HDAC)-6, -9, or Sirtuin-1 (Sirt1) augments the suppressive functions of Foxp3+ T regulatory (Treg) cells, but it is unclear if this involves different mechanisms, such that combined inhibition would be beneficial. We compared the suppressive functions of Tregs from wild-type C57BL/6 mice or mice with global (HDAC6-/-, HDAC9-/-, dual HDAC6/9-/-) or conditional deletion (CD4-Cre or Foxp3-Cre and floxed Sirt1; GSE26425) alone, or after treatment with isoform-selective HDAC inhibitors (HDACi). We found the heat shock response was crucial in mediating the effects of HDAC6, but not Sirt1 inhibition. Furthermore, while HDAC6, HDAC9 and Sirt1 all deacetylate Foxp3, each has diverse effects on Foxp3 transcription, and loss of HDAC9 is associated with stabilization of Stat5 acetylation and its transcriptional activity. Targeting different HDAC can increase Treg function by multiple and additive mechanisms, indicating the therapeutic potential for combinations of HDACi in the management of autoimmunity and alloresponses post-transplant.
ORGANISM(S): Mus musculus
PROVIDER: GSE36095 | GEO | 2012/06/21
SECONDARY ACCESSION(S): PRJNA151799
REPOSITORIES: GEO
ACCESS DATA