Project description:The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models It consists of a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from nearly 1,000 human cancer cell lines. All raw and processed data are available through an integrated portal on www.broadinstitute.org/ccle
Project description:The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models It consists of a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from nearly 1,000 human cancer cell lines. All raw and processed data are available through an integrated portal on www.broadinstitute.org/ccle The final cell line collection spans 36 cancer types. Representation of cell lines for each cancer type was mainly driven by cancer mortality in the United States, as a surrogate of unmet medical need, as well as availability.
Project description:This SuperSeries is composed of the following subset Series: GSE36133: Expression data from the Cancer Cell Line Encyclopedia (CCLE) GSE36138: SNP array data from the Cancer Cell Line Encyclopedia (CCLE) Refer to individual Series
Project description:The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models It consists of a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from nearly 1,000 human cancer cell lines. All raw and processed data are available through an integrated portal on www.broadinstitute.org/ccle The final cell line collection spans 36 cancer types. Representation of cell lines for each cancer type was mainly driven by cancer mortality in the United States, as a surrogate of unmet medical need, as well as availability.
Project description:The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models It consists of a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from nearly 1,000 human cancer cell lines. All raw and processed data are available through an integrated portal on www.broadinstitute.org/ccle
Project description:The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models It consists of a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from nearly 1,000 human cancer cell lines. All raw and processed data are available through an integrated portal on www.broadinstitute.org/ccle The final cell line collection spans 36 cancer types. Representation of cell lines for each cancer type was mainly driven by cancer mortality in the United States, as a surrogate of unmet medical need, as well as availability.
Project description:Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine.