LPS-induced expression in rat lung epithelial cells
Ontology highlight
ABSTRACT: Acute lung inflammation can alter the pulmonary function of susceptible individuals and exacerbate the pathogenesis of chronic inflammatory lung diseases including chronic obstructive pulmonary disease (COPD), cystic fibrosis and asthma. Exposure to lipopolysaccharide (LPS) or endotoxin, a constituent of outer cell membrane of gram negative bacteria, induces airway inflammation that is primarily characterized by increased polymorphonuclear neutrophils (PMNs) at early time points. Because LPS is present in variety of occupational and home environments and is an active constituent of cigarette smoke it is a risk factor for increasing prevalence and severity of non-occupational COPD, for adult onset of asthma and for wheezing in children. In airway epithelial cells, LPS stimulation increases mucin gene expression and mucous production. Hypersecretion of mucus overwhelms the ciliary clearance and obstructs airways, causing morbidity and mortality in chronic inflammatory respiratory lung diseases. In addition, acute bacterial infection contributes to the exacerbation of chronic airway diseases, specifically in advanced COPD and CF subjects, leading to increased healthcare burden and higher mortality. Bcl-2, a prosurvival protein that inhibits cell death plays a key role in normal cellular homeostasis and regulates the integrity of the mitochondrial and endoplasmic reticulum membranes. Gain- and loss-of-function studies showed that Bcl-2 expression sustains hyperplastic epithelial cells, and Bcl-2 expression is elevated in airway epithelial cells of subjects with cystic fibrosis and asthma. The present study investigated which inflammatory mediators induce mucous cell metaplasia and Bcl-2 expression following LPS exposure. Microarray analyses of mRNA from airway epithelial cells captured by laser microdissection from rat lungs snap-frozen at day 0 and 2 post LPS exposure were analyzed. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection from rat lungs snap-frozen at day 0 and day 2 post LPS exposure was performed to identify inflammatory mediators modulated by LPS exposure.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE36174 | GEO | 2012/03/01
SECONDARY ACCESSION(S): PRJNA152911
REPOSITORIES: GEO
ACCESS DATA