The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (expression data)
Ontology highlight
ABSTRACT: Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogues active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia which may be selectively targeted to therapeutic effect. To investigate the genetic program regulated by KDM1A in murine MLL-AF9 AML cells enriched for LSCs, we compared the transcriptome of KIT+Gr1+ control and Kdm1a KD cells using exon arrays soon after initiation of KD. At this time, there was no immunophenotypic evidence of differentiation in Kdm1a KD cells. Exonic expression values were condensed into gene-level expression summaries, which represent the mean expression value of the probe sets targeting the length of a given protein coding gene.
Project description:Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogues active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia which may be selectively targeted to therapeutic effect. To investigate the genetic program regulated by KDM1A in murine MLL-AF9 AML cells enriched for LSCs, we compared the transcriptome of KIT+Gr1+ control and Kdm1a KD cells using exon arrays soon after initiation of KD. At this time, there was no immunophenotypic evidence of differentiation in Kdm1a KD cells. Exonic expression values were condensed into gene-level expression summaries, which represent the mean expression value of the probe sets targeting the length of a given protein coding gene. Three separate samples from two different animals were used. Kdm1a KD samples were compared with control samples. Total six arrays.
Project description:Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogues active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia which may be selectively targeted to therapeutic effect. To investigate the effects of Kdm1a KD on histone modifications, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) in control and Kdm1a KD MLL-AF9 AML cells for dimethyl-H3K4 and dimethyl-H3K9, as well as for trimethyl-H3K4 and trimethyl-H3K9. Dimethyl-H3K4 and dimethyl-H3K9 are targeted for demethylation by KDM1A. For each of these histone modifications, we compared the mean ChIP-Seq signal across and around protein coding genes bound by the MLL-AF9 oncoprotein (Bernt et al., 2011) with the mean signal from genes not bound by MLL-AF9 expressed at high, middle or low levels.
Project description:Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogues active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia which may be selectively targeted to therapeutic effect.
Project description:This SuperSeries is composed of the following subset Series: GSE36346: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (ChIP-Seq data) GSE36347: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (expression data) Refer to individual Series
Project description:We investigated the role of the transcriptional regulator Id2 in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by tet-regulated MLL-AF9 co-expressed with oncogenic NRASG12D (Tet-off MLL-AF9), we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in Tet-Off MLL-AF9 AML cells in vitro partially phenocopies MLL-AF9 depletion and results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. To compare gene expression changes associated with enforced Id2 expression and MLL-AF9 withdrawal, RNA sequencing analysis was performed on Tet-off MLL-AF9 cells transduced with an Id2 over-expressing or a control vector, or upon MLL-AF9 dox-inducible knock-down.
Project description:We investigated the role of the transcriptional regulators Id2 and E2-2 (encoded by Tcf4) in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by a Tet-off inducible MLL-AF9 allele co-expressed with oncogenic NRASG12D, we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in MLL-AF9 AML cells results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. E2-2 silencing phenocopies Id2 overexpression in MLL-AF9-AML cells. To study the gene expression changes associated with E2-2 depletion in the context of MLL-rearranged AML, RNA sequencing analysis was performed on MLL-AF9;NRAS AML cells transduced with vectors expressing hairpins against E2-2 (shTcf4#654 and shTcf4#3646) or a control hairpin against Renilla luciferase (shRen).
Project description:We investigated the role of the transcriptional regulator Id2 in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by tet-regulated MLL-AF9 co-expressed with oncogenic NRASG12D (Tet-off MLL-AF9), we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in Tet-Off MLL-AF9 AML cells in vitro partially phenocopies MLL-AF9 depletion and results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. To compare gene expression changes associated with enforced Id2 expression and MLL-AF9 withdrawal, RNA sequencing analysis was performed on Tet-off MLL-AF9 cells transduced with an Id2 over-expressing or a control vector, or upon MLL-AF9 dox-inducible knock-down. Primary AMLs driven by Tet-off inducible MLL/AF9 expression linked to dsRED reporter, in association with oncogenic NRASG12D (Tet-off MLL-AF9) were generated by reconstituting lethally irradiated congenic mice with foetal liver cells co-transduced with a Tet-Off-MLL-AF9-dRED retroviral vector and a second vector co-expressing NRASG12D together with the Tet-Off responsive transcriptional activator. RNA sequencing analysis sequencing analysis was performed on Tet-Off MLL-AF9/dsRED+ AML cells treated in vitro with doxycycline (DOX) for 4 days to inactivate MLL-AF9 expression or left untreated (UT). For the Id2 over-expression experiment, Tet-Off MLL-AF9/dsRED+ AML cells were transduced in vitro with an Id2-GFP or a control-GFP retroviral vector. Viable GFP-positive cells were FACS-sorted 2 days after transduction and used for RNA sequencing analysis.
Project description:We investigated the role of the transcriptional regulators Id2 and E2-2 (encoded by Tcf4) in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by a Tet-off inducible MLL-AF9 allele co-expressed with oncogenic NRASG12D, we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in MLL-AF9 AML cells results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. E2-2 silencing phenocopies Id2 overexpression in MLL-AF9-AML cells. To study the gene expression changes associated with E2-2 depletion in the context of MLL-rearranged AML, RNA sequencing analysis was performed on MLL-AF9;NRAS AML cells transduced with vectors expressing hairpins against E2-2 (shTcf4#654 and shTcf4#3646) or a control hairpin against Renilla luciferase (shRen). Primary AMLs driven by MLL/AF9 expression linked to cherry reporter, in association with oncogenic NRASG12D (MLL/AF9;NRAS) were generated by reconstituting lethally irradiated congenic mice with fetal liver cells co-transduced with the MSCV-MLL/AF9-IRES-cherry retroviral vector and a second vector co-expressing NRASG12D together with luciferase (MSCV-luciferase-IRES-NRASG12D). RNA sequencing analysis sequencing analysis was performed on MLL-AF9;NRAS AML cells transduced in vitro with vectors expressing hairpins against E2-2 (shTcf4#654 and shTcf4#3646) or a control hairpin against Renilla luciferase (shRen) linked to the reporter GFP. Viable GFP-positive cells were FACS-sorted 2 days after transduction and used for RNA sequencing analysis. Two independent biological replicates of the experiment were used for the RNA sequencing (9-5-14 and 14-4-14).
Project description:P2X7 was significantly up-regulated in leukemia patients, especially in AML (MLL-AF9) and often related to poor prognosis.We compared the transcriptomic changes in MLL-AF9 induced mouse AML and overexpressed wP2X7 in MLL-AF9 induced AML. Engaged to explore the mechanism of P2X7 in leukemia progression. Mouse AML was induced by expressing MLL-AF9 in mouse HSPCs. Leukemia cells were divided into two groups, c-kit+ and c-kit-. Due to leukemia cells were nearly 95% c-kit+ in P2X7-overexpressed AML cells, we set up four groups of leukemia cells, namely leukemia total cells (V total), leukemia c-kit positive cells (V c-kit+), leukemia c-kit negative cells (V c-kit-), overexpressed wide type P2X7 leukemia cells (wP2X7).
Project description:Leukemia initiating cells (LICs) of acute myeloid leukemia (AML) may arise from self-renewing hematopoietic stem cells (HSCs) and from committed progenitors. However, it remains unclear how leukemia-associated oncogenes instruct LIC formation from cells of different origins and if differentiation along the normal hematopoietic hierarchy is involved. Here, using murine models with the driver mutations MLL-AF9 or MOZ-TIF2, we found that regardless of the transformed cell types, myelomonocytic differentiation to the granulocyte macrophage progenitor (GMP) stage is critical for LIC generation. Blocking myeloid differentiation through disrupting the lineage-restricted transcription factor C/EBPa eliminates GMPs, blocks normal granulopoiesis, and prevents AML development. In contrast, restoring myeloid differentiation through inflammatory cytokines “rescues” AML transformation. Our findings identify myeloid differentiation as a critical step in LIC formation and AML development, thus guiding new therapeutic approaches. Primary KSL, CMP, and GMP cells from wildtype controls and C/Ebpa knockouts were used for RNA extraction and hybridization on Affymetrix microarrays. We also compared the microarray samples of leukemic granulocyte macrophage progenitor compartments (L-GMPs) from MLL-AF9 transformed control or cytokine rescued C/EBPa KO leukemic mouse bone marrow and their secondary recipients with those non-Leukemia KSLs and CMPs from MLL-AF9 transduecd KO recipients with no leukemia development.