Nkx2.1 represses a latent gastric differentiation program in lung adenocarcinoma
Ontology highlight
ABSTRACT: During cancer evolution, cellular differentiation programs become dysregulated. The transcription factor Nkx2-1 is a master regulator of pulmonary differentiation that is downregulated in poorly differentiated lung adenocarcinoma. Here we use conditional murine genetics to study the fate of lung epithelial cells upon loss of their master cell fate regulator. Nkx2-1 deletion in normal and neoplastic lung causes not only loss of pulmonary identity but also gastric transdifferentiation. Nkx2-1 maintains pulmonary identity by sequestering the Foxa1 transcription factor at lung-specific loci and inhibiting Foxa1 binding to gastrointestinal targets. Murine Nkx2-1-negative lung tumors mimic the mucinous subtype of human lung adenocarcinoma, which also exhibits gastric transdifferentiation. Nkx2-1-negative lung adenocarcinomas are dependent on the gastrointestinal gene Hnf4a for efficient initiation. Thus, loss of Nkx2-1 results in transdifferentiation rather than stable dedifferentiation in vivo, suggesting that inactivation of both active and latent differentiation programs may be required for tumors to reach a primitive, dedifferentiated state.
ORGANISM(S): Mus musculus
PROVIDER: GSE36473 | GEO | 2013/04/10
SECONDARY ACCESSION(S): PRJNA153501
REPOSITORIES: GEO
ACCESS DATA