SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells
Ontology highlight
ABSTRACT: Recent studies demonstrated that cancer stem cells (CSCs) have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2 and NOTCH1 was detected in side population (SP) cells than in none side population (NSP) cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2 and NOTCH1 in xenografted NOD/SCID mice. By RNA-Seq method, additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.
ORGANISM(S): Homo sapiens
PROVIDER: GSE36597 | GEO | 2012/08/31
SECONDARY ACCESSION(S): PRJNA153681
REPOSITORIES: GEO
ACCESS DATA