MiRNAs expression in kidney tissues of systemic lupus erythematosus (SLE) individuals
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as SLE.
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as SLE. We isolated the renal biopsy samples from eight SLE patients as well as tumor adjacent kidney tissues from four kidney cancer patients as controls for comparison. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as SLE. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as SLE. This SuperSeries is composed of the SubSeries listed below.
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as RA.
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as CIA. We isolated joint samples pooled from six CIA mice or from six naM-CM-/ve control mice. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as EAE. We isolated the spinal cords pooled from six EAE mice or from six naM-CM-/ve control mice. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as MRL/lpr. We isolated the kidneys tissues pooled from six female MRL/lpr mice or from three control mice. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases such as RA. We isolated the synovial tissues from four RA patients as well as from two normal people (victims of accidental injury) and two osteoarthristis (OA) patients as controls for comparison. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as CIA.
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as EAE.