Gene signatures of normal hTERT immortalized ovarian epithelium and fallopian tube epithelium (paired cultures from 2 donor patients)
Ontology highlight
ABSTRACT: Most epithelial ovarian cancers are thought to arise from different cells in the ovarian or fallopian tube epithelium. We hypothesized that these distinct cells-of-origin may play a role in determining ovarian tumor phenotype and also could inform the molecular classification of ovarian cancer. To test this hypothesis, we developed new methods to isolate and culture paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from multiple donors without cancer and identified a cell-of-origin gene expression signature that distinguished these cell types within the same patient. Application of the OV versus FT cell-of-origin gene signature to gene expression profiles of primary ovarian cancers permitted identification of distinct OV and FT-like subgroups among these cancers. Importantly, the normal FT-like tumor classification correlated with a significantly worse disease-free survival. This work describes a new experimental method for culture of normal human OV and FT epithelial cells from the same patient. These findings provide new evidence that cell-of-origin is an important source of ovarian tumor heterogeneity and the associated differences in tumor phenotype.
Project description:Most epithelial ovarian cancers are thought to arise from different cells in the ovarian or fallopian tube epithelium. We hypothesized that these distinct cells-of-origin may play a role in determining ovarian tumor phenotype and also could inform the molecular classification of ovarian cancer. To test this hypothesis, we developed new methods to isolate and culture paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from multiple donors without cancer and identified a cell-of-origin gene expression signature that distinguished these cell types within the same patient. Application of the OV versus FT cell-of-origin gene signature to gene expression profiles of primary ovarian cancers permitted identification of distinct OV and FT-like subgroups among these cancers. Importantly, the normal FT-like tumor classification correlated with a significantly worse disease-free survival. This work describes a new experimental method for culture of normal human OV and FT epithelial cells from the same patient. These findings provide new evidence that cell-of-origin is an important source of ovarian tumor heterogeneity and the associated differences in tumor phenotype. We analyzed 12 samples from two donor patients and established cultures of both ovarian epithelium and fallopian tube epithelium (hTERT immortalized), each with 3 replicates (different culture passages).
Project description:We analysed the extracellular matrix (ECM) landscape of fresh, healthy tissues from human fallopian tube (FT), fimbria (FB, the tissue of origin of serous tubal intraepithelial lesions) and ovarian tissue (OV). The aim was to identify differentially expressed matrix proteins between FB and FT or OV which may promote the neoplastic transformation of serous tubal intraepithelial lesions (STICs) into high-grade serous ovarian cancer, HGSOC, and metastasis from the FB to the OV.
Project description:Fallopian tube epithelium is the tissue-of-origin of most high grade serous papillary ovarian carcinoma. This tumor has been exensively investigated and sequenced but expression profiling data of normal fallopian tube epithelial cells is still rare. This project compares the miRNA profiles of high grade serous papillary ovarian tumors (FFPE and fresh frozen) to that of normal unmatched epithelial cells from resected fallopian tubes.
Project description:Comparison of gene expression profiling among high-grade ovarian epithelial cancer, ovarian epithelium and fallopian tube which might indicate the origin and carcinogenesis of ovarian cancer
Project description:A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumor of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumors, immortalized ovarian surface epithelial cells, and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantitation of > 10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II), and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic dataset, as well as a confirmatory publicly available CPTAC/TCGA tumor proteome dataset, into a predominantly epithelial and mesenchymal HGSOC tumor cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumors indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium.
Project description:The purpose of this study is to understand the effects of adrenergic signaling on the transcriptome of cell line models postulated to be the cells of origin of epithelial ovarian cancers using RNA-Seq. Here we explored the effects of the stress-related hormone, norepinephrine, on normal human ovarian and fallopian tube surface epithelial cellss. We investigated the early transcriptional response to norepinephrine in normal immortalized ovarian surface epithelial cells and fallopian tube secretory cells. RNA-Seq data of treated and untreated cells were analyzed to identify genes with differential expression.
Project description:Microarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.
Project description:The transcriptomes of three immortalized ovarian surface epithelial cell lines (iOSE, PMID: 17266044) and primary OSE cells (Innoprot, Derio, Spain) and four immortalized fallopian tube secretory epithelial (iFTE) cell lines (PMID: 21502498, 22936217) were compared. RNA-sequencing was done from rRNA depleted total RNA (Ribo-Zero rRNA Removal Kit) to approx. 20 million 50 bp paired end reads per sample. A discriminative gene expression signature comprised of 211 genes was developed and used to classify isolated and EpCAM enriched primary ovarian cancer cells (PMID: 25991672). Impact of this signature on overall survival was assessed from several publicly available ovarian cancer gene expression data sets. Background: High grade serous ovarian cancer (HGSOC) is characterized by extensive local, i.e. peritoneal, tumor spread, manifested in two different clinical presentations, miliary (many millet sized peritoneal implants) and non-miliary (few large exophytically growing peritoneal nodes), and an overall unfavorable outcome. HGSOC is thought to arise from fallopian tube secretory epithelial cells, via so called serous tubal intraepithelial carcinomas (STICs) but an ovarian origin was never ruled out for at least some cases. Comparative transcriptome analyses of isolated tumor cells from fresh HGSOC tissues and (immortalized) ovarian surface epithelial and fallopian tube secretory epithelial cell lines revealed a close relation between putative origin and tumor spread characteristic, i.e. miliary from tubes and non-miliary from ovaries.
Project description:Microarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer. Laser microcapture of samples from 12 BRCA1 mutation carriers and 12 non-mutation subjects was performed. Samples were further grouped according to menstrual cycle.
Project description:The cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer. RNA was isolated from the fallopian tube cancers of independent DKO mice and normal fallopian tubes of control mice and subjected to mRNA expression analysis using an Illumina platform (MouseWG-6 v2 Expression BeadChip).