Project description:Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.
Project description:Dosage compensation in male Drosophila relies on the X chromosome-specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called "high-affinity sites" (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.
Project description:Transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila males is brought about by a ribonucleoprotein assembly called Male-Specific-Lethal or Dosage Compensation Complex (MSL-DCC). This machinery is formed in male flies and specifically associates with active genes on the X chromosome. After assembly at dedicated high-affinity "entry" sites (HAS) on the X chromosome, the complex distributes to the nearby active chromatin. High-resolution, genome-wide mapping of the MSL-DCC subunits by chromatin immunoprecipitation (ChIP) on oligonucleotide tiling arrays suggests a rather homogenous spreading of the intact complex onto transcribed chromatin. Coupling ChIP to deep sequencing (ChIP-seq) promises to map the chromosomal interactions of the DCC with improved resolution. We present ChIP-seq binding profiles for all complex subunits, including the first description of the RNA helicase MLE binding pattern. Exploiting the preferential representation of direct chromatin contacts upon high-energy shearing, we report a surprising functional and topological separation of MSL protein contacts at three classes of chromosomal binding sites. Furthermore, precise determination of DNA fragment lengths by paired-end ChIP-seq allows decrypting of the local complex architecture. Primary contacts of MSL-2 and MLE define HAS for the DCC. In contrast, association of the DCC with actively transcribed gene bodies is mediated by MSL-3 binding to nucleosomes. We identify robust MSL-1/MOF binding at a fraction of active promoters genome-wide. Correlation analyses suggest that this association reflects a function outside dosage compensation. Our comprehensive analysis provides a new level of information on different interaction modes of a multiprotein complex at distinct regions within the genome.
Project description:Little is known about how variation in sequence composition alters transcription factor occupancy to precisely recruit large transcription complexes. A key model for understanding how transcription complexes are targeted is the Drosophila dosage compensation system in which the male-specific lethal (MSL) transcription complex specifically identifies and regulates the male X chromosome. The chromatin-linked adaptor for MSL proteins (CLAMP) zinc-finger protein targets MSL to the X chromosome but also binds to GA-rich sequence elements throughout the genome. Furthermore, the GAGA-associated factor (GAF) transcription factor also recognizes GA-rich sequences but does not associate with the MSL complex. Here, we demonstrate that MSL complex recruitment sites are optimal CLAMP targets. Specificity for CLAMP binding versus GAF binding is driven by variability in sequence composition within similar GA-rich motifs. Therefore, variation within seemingly similar cis elements drives the context-specific targeting of a large transcription complex.