A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs.
Ontology highlight
ABSTRACT: Transcriptome profiling of wild type and cfo1 mutant with fluconazole treatment in Cryptococcus neoformans var. grubii H99 Purpose: The goals of this study are to compare cfo1 mutant transcriptome profiling (RNA-seq) to wild-type with or without fluconazole treatment in Cryptococcus neoformans var. grubii H99. Methods: mRNA profiles of wild-type and cfo1 mutant with or without fluconazole treatment were generated by RNA-Seq, using Illumina GAIIx. The sequence reads that passed quality filters were mapped to reference genome and the normalized RPKM values were calculated by CLC Genomics Workbench. Results: Compared to wild-type, a number of genes were differentially expressed in the cfo1 mutant, especially genes involved in iron homeostasis and transport, ergosterol biosynthesis, mitochondrial function and respiration. Conclusions: Our data suggested reduced expression of the genes in the respiratory chain is the main reason for altered antifungal sensitivity of the cfo1 mutant. The results of our study revealed that iron uptake plays a key role in fluconazole sensitivity of C. neoformans.
ORGANISM(S): Cryptococcus neoformans var. grubii H99
PROVIDER: GSE37875 | GEO | 2013/05/31
SECONDARY ACCESSION(S): PRJNA164705
REPOSITORIES: GEO
ACCESS DATA