Project description:The microaerophilic pathogen Campylobacter jejuni possesses inducible systems for resisting NO. Two globins--Cgb (a single-domain globin) and Ctb (a truncated globin)--are up-regulated in response to NO via the positively acting transcription factor NssR. Our aims were to determine whether these oxygen-binding globins also function in severely oxygen-limited environments, as in the host. At growth-limiting oxygen transfer rates, bacteria were more S-nitrosoglutathione (GSNO) sensitive, irrespective of the presence of Cgb, Ctb, or NssR. Pregrowth of cells with GSNO enhanced GSNO resistance, even in nssR and cgb mutants, but transcriptomic profiling of oxygen-limited, NO-exposed cells failed to reveal the NssR regulon. Nevertheless, globin expression in an Escherichia coli mutant lacking the NO-detoxifying flavohemoglobin Hmp showed that Cgb and Ctb consume NO aerobically or anoxically and offer some protection to respiratory inhibition by NO. The constitutively expressed nitrite reductase NrfA does not provide resistance under oxygen-limited conditions. We, therefore, hypothesize that, although Cgb and NrfA can detoxify NO, even anoxically, they are neither up-regulated nor functional under physiologically relevant oxygen-limited conditions and, second, responses to NO do not stem from trancriptional regulation.
Project description:This SuperSeries is composed of the following subset Series: GSE38114: Exposure of microaerobic Campylobacter jejuni to 10 micromolar NOC-5 & NOC-7 GSE38115: Exposure of oxygen limited Campylobacter jejuni to 10 micromolar NOC-5 & NOC-7 Refer to individual Series
Project description:ImportanceCampylobacter jejuni is a bacterium that is prevalent in the ceca of farmed poultry such as chickens. Consumption of ill-prepared poultry is thus the most common route by which C. jejuni infects the human gut to cause a typically self-limiting but severe gastrointestinal illness that can be fatal to very young, old, or immunocompromised people. The lack of a vaccine and an increasing resistance to current antibiotics highlight a need to better understand the mechanisms that make C. jejuni a successful human pathogen. This study focused on the functional components of one such mechanism-a molecular system that helps C. jejuni thrive despite the restriction on growth-available iron by the human body, which typically defends against pathogens. In providing a deeper understanding of how this system functions, this study contributes toward the goal of reducing the enormous global socioeconomic burden caused by C. jejuni.
Project description:Campylobacter jejuni expresses two hemoglobins, each of which exhibits a heme pocket and structural signatures in common with vertebrate and plant globins. One of these, designated Cgb, is homologous to Vgb from Vitreoscilla stercoraria and does not possess the reductase domain seen in the flavohemoglobins. A Cgb-deficient mutant of C. jejuni was hypersensitive to nitrosating agents (S-nitrosoglutathione [GSNO] or sodium nitroprusside) and a nitric oxide-releasing compound (spermine NONOate). The sensitivity of the Cgb-deficient mutant to methyl viologen, hydrogen peroxide, and organic peroxides, however, was the same as for the wild type. Consistent with the protective role of Cgb against NO-related stress, cgb expression was minimal in standard laboratory media but strongly and specifically induced after exposure to nitrosative stress. In contrast, the expression of Cgb was independent of aeration and the presence of superoxide. In the absence of preinduction by exposure to nitrosative stress, no difference was seen in the degree of respiratory inhibition by NO or the half-life of the NO signal when cells of the wild type and the cgb mutant were compared. However, cells expressing GSNO-upregulated levels of Cgb exhibited robust NO consumption and respiration that was relatively NO insensitive compared to the respiration of the cgb mutant. Based on similar studies in Campylobacter coli, we also propose an identical role for Cgb in this closely related species. We conclude that, unlike the archetypal single-domain globin Vgb, Cgb forms a specific and inducible defense against NO and nitrosating agents.
Project description:BACKGROUND: During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investigate the response to acid stress of three sequenced C. jejuni strains with different acid tolerances using HCl and acetic acid. RESULTS: Two-dimensional gel electrophoresis was used for proteomic analysis and proteins were radioactively labelled with methionine to identify proteins only related to acid exposure. To allow added radioactive methionine to be incorporated into induced proteins, a modified chemically defined broth was developed with the minimal amount of methionine necessary for satisfactory growth of all strains. Protein spots were analyzed using image software and identification was done with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19), thioredoxin-disulfide (TrxB), a hypothetical protein Cj0706 (Cj0706), molybdenum cofactor biosynthesis protein (MogA), and bacterioferritin (Dps). Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using qRT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced during acid stress of C. jejuni. Both strain and acid type affected sensitivity and response.
Project description:In prokaryotic cells the ATP-dependent proteases Lon and ClpP (Clp proteolytic subunit) are involved in the turnover of misfolded proteins and the degradation of regulatory proteins, and depending on the organism, these proteases contribute variably to stress tolerance. We constructed mutants in the lon and clpP genes of the food-borne human pathogen Campylobacter jejuni and found that the growth of both mutants was impaired at high temperature, a condition known to increase the level of misfolded protein. Moreover, the amounts of misfolded protein aggregates were increased when both proteases were absent, and we propose that both ClpP and Lon are involved in eliminating misfolded proteins in C. jejuni. In order to bind misfolded protein, ClpP has to associate with one of several Clp ATPases. Following inactivation of the ATPase genes clpA and clpX, only the clpX mutant displayed the same heat sensitivity as the clpP mutant, indicating that the ClpXP proteolytic complex is responsible for the degradation of heat-damaged proteins in C. jejuni. Notably, ClpP and ClpX are required for growth at 42 degrees C, which is the temperature of the intestinal tract of poultry, one of the primary carriers of C. jejuni. Thus, ClpP and ClpX may be suitable targets of new intervention strategies aimed at reducing C. jejuni in poultry production. Further characterization of the clpP and lon mutants revealed other altered phenotypes, such as reduced motility, less autoagglutination, and lower levels of invasion of INT407 epithelial cells, suggesting that the proteases may contribute to the virulence of C. jejuni.
Project description:BackgroundCampylobacter jejuni is a leading foodborne pathogen worldwide. Despite the fastidious nature of C. jejuni growth, increasing numbers of human campylobacteriosis suggest that C. jejuni may possess unique mechanisms to survive under various stress conditions. C. jejuni possesses only three sigma factors (FliA, RpoD, and RpoN) and lacks stress-defense sigma factors. Since FliA and RpoD are dedicated to flagella synthesis and housekeeping, respectively, in this study, we investigated the role of RpoN in C. jejuni's defense against various stresses.ResultsSurvivability of an rpoN mutant was compared with the wild-type C. jejuni under various stress conditions. While the growth of the rpoN mutant was as comparably as that of the wild type in shaking cultures, the rpoN mutant exhibited significant survival defects when cultured statically. The rpoN mutant was more sensitive to osmotic stress (0.8% NaCl) with abnormally-elongated cell morphology. Compared to the wile type, the rpoN mutant was more susceptible to acid stress (pH 5) and more resistant to hydrogen peroxide. However, the rpoN mutation had little effect on the resistance of C. jejuni to alkaline pH, heat, cold and antimicrobials.ConclusionsThe results demonstrate that RpoN plays an important role in C. jejuni's defense against various stresses which this bacterial pathogen may encounter during transmission to and infection of humans.
Project description:The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter(-1). C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely "bet-hedging" survival strategies relying on the presence of stress-fit individuals in a heterogeneous population.
Project description:Campylobacter jejuni is a major food-borne pathogen. Despite causing enteritis in humans, it is a well-adapted intestinal microorganism in animals, hardly ever generating disease symptoms. Nevertheless, as a true microaerophilic microorganism it is still puzzling how Campylobacter cells can survive on chicken meat, the main source of human infection. In this study, we demonstrate that C. jejuni is able to withstand conditions of atmospheric oxygen tension when cocultured with Pseudomonas species, major food-spoiling bacteria that are frequently found on chicken meat in rather high numbers. Using an in vitro survival assay, interactions of 145 C. jejuni wild-type strains and field isolates from chicken meat, broiler feces, and human clinical samples with type strains and food isolates of Pseudomonas spp., Proteus mirabilis, Citrobacter freundii, Micrococcus luteus, and Enterococcus faecalis were studied. When inoculated alone or in coculture with Proteus mirabilis, Citrobacter freundii, Micrococcus luteus, or Enterococcus faecalis type strains, Campylobacter cells were able to survive ambient oxygen levels for no more than 18 h. In contrast, Campylobacter bacteria inoculated with type strains or wild-type isolates of Pseudomonas showed a prolonged aerobic survival of up to >48 h. This microbial commensalism was diverse in C. jejuni isolates from different sources; isolates from chicken meat and humans in coculture with Pseudomonas putida were able to use this survival support better than fecal isolates from broilers. Scanning electron microscopy revealed the development of fiberlike structures braiding P. putida and C. jejuni cells. Hence, it seems that microaerophilic C. jejuni is able to survive ambient atmospheric oxygen tension by metabolic commensalism with Pseudomonas spp. This bacterium-bacterium interaction might set the basis for survival of C. jejuni on chicken meat and thus be the prerequisite step in the pathway toward human infection.