Transcriptomics

Dataset Information

0

Lsd1 coordinates trophoblast development by retaining stem cells in their niche and directing cell fate


ABSTRACT: Stem cells reside in specific niches providing stemness-maintaining environments. Thus, the regulated migration from these niches is associated with differentiation onset. However, mechanisms retaining stem cells in their niche remain poorly understood. Here, we show that the epigenetic regulator lysine-specific demethylase 1 (Lsd1) organises the trophoblast niche of the early mouse embryo by coordinating migration and invasion of trophoblast stem cells (TSCs). Lsd1 deficiency leads to the depletion of the stem cell pool resulting from precocious migration of TSCs. Migration is induced by premature expression of the transcription factor Ovol2 that is repressed by Lsd1 in undifferentiated wild-type TSCs. Increasing Ovol2 levels suffices to recapitulate the migration phenotype. Furthermore, Lsd1-deficient TSCs exhibit a developmental bias towards cells of the syncytiotrophoblast and impaired spongiotrophoblast and trophoblast giant cell differentiation. In summary, we describe that the epigenetic modifier Lsd1 coordinates placental development by retaining TSCs in their niche and directing trophoblast differentiation.

ORGANISM(S): Mus musculus

PROVIDER: GSE38277 | GEO | 2014/01/17

SECONDARY ACCESSION(S): PRJNA167507

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-01-17 | E-GEOD-38277 | biostudies-arrayexpress
2019-09-02 | GSE130298 | GEO
| PRJNA167507 | ENA
2023-04-26 | PXD037892 | Pride
2023-01-27 | PXD039611 | Pride
| PRJNA535431 | ENA
2024-10-31 | GSE245037 | GEO
2024-09-08 | GSE241665 | GEO
2021-07-02 | GSE136256 | GEO
2023-02-09 | E-MTAB-12650 | biostudies-arrayexpress