Expression data from leaves of GA-deficient and GA-insensitive transgenic poplar
Ontology highlight
ABSTRACT: We used whole-genome microarrays to identify differentially expressed genes in leaves of GA-deficient (35S::PcGA2ox) and/or GA-insensitive (35S::rgl1) transgenics as compared to WT poplar (717-1B4 genotype). Our work suggests that the molecular machinery that reduces gibberellins (GAs) concentration and signaling is a major route for restraining growth under both immediate and imminent adverse conditions. We show that inhibition of growth as a result of water deprivation and short days (SDs) coincides with up-regulation of several DELLA and GA2ox encoding genes in poplar. Likewise, GA-deficient and GA-insensitive transgenics, with up-regulated GA2ox and DELLA domain proteins, elicited a hypersensitive growth inhibition in response to both drought and SDs. Because the GA-modified transgenic showed accelerated response to drought and SD, we hypothesized that the mechanisms associated with these responses are constitutively elevated even under control conditions (well-watered, long day photoperiod). Therefore, we used whole-genome poplar microarray to study transcriptome level changes in the leaves of transgenic compared to WT plants grown under control environment.
ORGANISM(S): Populus sp. Populus tremula x Populus alba
PROVIDER: GSE38390 | GEO | 2014/01/01
SECONDARY ACCESSION(S): PRJNA167794
REPOSITORIES: GEO
ACCESS DATA