Gene expression analysis of molecules with known function in HLA class II antigen processing and presentation in hematopoietic and (cytokine pre-treated) non-hematopoietic cells.
Ontology highlight
ABSTRACT: Gene expression analysis of molecules with known function in HLA class II antigen processing and presentation. Various hematopoietic cell types and (cytokine pre-treated) non-hematopoietic cells that are targeted in Graft-versus-Leukemia reactivity and Graft-versus-Host Disease were collected. Expression was compared between the different hematopoietic and non-hematopoietic cell types for the Invariant chain, HLA-DMA, HLA-DMB, HLA-DOA and HLA-DOB genes. The data show that the Invariant chain, HLA-DMA, HLA-DMB and HLA-DOA genes are expressed in all or the majority of cell types with HLA class II surface expression, whereas expression of the HLA-DOB gene is restricted to professional antigen presenting B-cells and mature dendritic cells.
Project description:Gene expression analysis of molecules with known function in HLA class II antigen processing and presentation. Various hematopoietic cell types and (cytokine pre-treated) non-hematopoietic cells that are targeted in Graft-versus-Leukemia reactivity and Graft-versus-Host Disease were collected. Expression was compared between the different hematopoietic and non-hematopoietic cell types for the Invariant chain, HLA-DMA, HLA-DMB, HLA-DOA and HLA-DOB genes. The data show that the Invariant chain, HLA-DMA, HLA-DMB and HLA-DOA genes are expressed in all or the majority of cell types with HLA class II surface expression, whereas expression of the HLA-DOB gene is restricted to professional antigen presenting B-cells and mature dendritic cells. Total RNA was isolated from various hematopoietic cell types isolated (and cultured) from (G-CSF mobilized) peripheral blood from five different individuals and from (IFN-g pre-treated) fibroblasts cultured from skin biopsies from four different patients transplanted with allogeneic hematopoietic stem cells.
Project description:Major Histocompatibility Complex of Class II (MHCII) antigen presentation is a key event of adaptive immunity. HLA-DM favors the presentation of kinetically stable peptide-MHCII complexes but does not bind peptides itself and exhibits only a low degree of polymorphism. To date, no evidence for altered function of DM due to natural variations has been reported. We define the presence of DM haplotypes in human populations covered by the 1000 Genomes Project and probe their activity in antigen presentation assays. Our results indicate a clear linkage between DMA*0103 and DMB*0107 never reported before. Thehe corresponding heterodimer features a distinct activity profile when compared to the most frequent allotype (DMA*0101-DMB*0101). In vitro experiments demonstrate a broader pH activity profile for the new allotype, explaining its characteristic cellular function. Together, our results suggest that natural variations of DM have important consequences for an individual’s adaptive immune response.
Project description:The SV-BR-1 cell line was derived from a chest wall lesion of a breast cancer patient. SV-BR-1 cells were stably transfected with CSF2 (encoding GM-CSF), resulting in the SV-BR-1-GM cell line. Following irradiation to prevent cell replication, both SV-BR-1 (Wiseman and Kharazi, The Open Breast Cancer Journal, 2010, 2, 4-11) and SV-BR-1-GM (Wiseman and Kharazi, Breast J. 2006 Sep-Oct;12(5):475-80) cells have been applied as whole-cell therapeutics in clinical trial settings for advanced breast cancer. Molecular profiles of non-irradiated SV-BR-1-GM cells have been established from various manufacturing lots via Illumina HumanHT-12 V4.0 expression beadchip arrays (GPL10558). A key finding from the study is the identification of an immune signature expressed in SV-BR-1-GM cells which includes the MHC class II factors HLA-DMA, HLA-DMB, HLA-DRA, and HLA-DRB3. Since tumor regressions were apparent in clinical trial subjects matching at an HLA-DRB3 allele with SV-BR-1-GM we hypothesize that (partial) HLA matching is needed for maximal tumor-directed clinical responses to occur.
Project description:Analysis of the peptide repertoires eluted from different HLA-DP molecules expressed in HeLa cells co-expressing Invariant chain either with or without HLA-DM as components of the HLA class II processing machinery. Divergence of the immunopeptidomes and the impact of HLA-DM were investigated in relation to the capacity of HLA-DP molecules to elicit alloreactive T-cell responses.
Project description:Alternative splicing (AS) within the β cell has been proposed as one potential pathway that may exacerbate autoimmunity and unveil novel immunogenic epitopes in type 1 diabetes (T1D). We employed a computational strategy to prioritize pathogenic splicing events in human islets treated with IL-1β + IFN-γ as an ex vivo model of T1D and coupled this analysis with a k-mer based approach to predict RNA binding proteins involved in AS events. In total, 969 AS events were identified in cytokine-treated islets, with the majority (44.8%) involving a skipped exon. AS events occurred with high frequency in MHC Class II-related mRNAs, and targeted qPCR validated reduced inclusion of Exon5 in the MHC Class II gene HLA-DMB, while RNA FISH confirmed HLA-DMB splicing in pancreatic sections from human T1D donors. Together, these data suggest that dynamic control of AS plays a role in the β cell response to inflammatory signals during T1D evolution.
Project description:A number of autoimmunity-associated MHC class II proteins interact only weakly with the invariant chain-derived class II-associated invariant chain peptide (CLIP). CLIP dissociates rapidly from I-Ag7 even in the absence of DM, and this property is related to the type 1 diabetes-associated b57 polymorphism. We generated knock-in Non-obese Diabetic (NOD) mice with a single amino acid change in the CLIP segment of invariant chain in order to moderately slow CLIP dissociation from I-Ag7. These knock-in mice had a significantly reduced incidence of spontaneous type 1 diabetes and diminished islet infiltration by CD4 T cells, in particular T cells specific for fusion peptides generated by covalent linkage of proteolytic fragments within b cell secretory granules. Rapid CLIP dissociation enhanced presentation of such extracellular peptides, thus bypassing the conventional MHC class II antigen processing pathway. Autoimmunity-associated MHC class II polymorphisms therefore not only modify binding of self-peptides, but also alter the biochemistry of peptide acquisition.
Project description:While donor specific antibody (DSA) against HLA class II could frequently cause chronic antibody-mediated rejection (ABMR) in organ transplantation, anti-A/B antibody would not do so, because blood group ABO-incompatible transplantation has shown favorable graft outcome. Recently, an increasing attention has been paid to the importance of direct allorecognition of CD4 T-cells against HLA-class II expressed on graft endothelial cells. However, the effect of allo-antibody binding on its allorecognition remains unclear. Microarray analysis and molecular profiling demonstrated that CD275 (PD-L1) expression was increased by anti-A/B ligation-mediated ERK inactivation in endothelial cells despite IFNγ stimulation.
Project description:Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T-cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. In this study, we performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlation between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers. Microarray gene expression analysis was performed on hematological malignancies of different origins and their healthy hematopoietic counterparts as well as on healthy non-hematopoietic cell types from organs that are often targeted in Graft-versus-Host Disease (166 samples in total). Various non-hematopoietic cell types were cultured in the presence of IFN-γ or T-cell culture supernatant to allow gene expression analysis under inflammatory conditions. Malignant and healthy hematopoietic cells were isolated by flow cytometry based on expression of specific surface markers and healthy non-hematopoietic cell types were isolated or cultured from tissue biopsies or surgically removed specimen. Various non-hematopoietic cell types were in vitro cultured for 4 days in the presence of IFN-γ or T-cell culture supernatant to mimic inflammation. The dataset allows comparison of gene expression between hematological malignancies and healthy non-hematopoietic cell types to estimate efficacy and toxicity of immunotherapeutic targets for hematological malignancies. Total RNA was isolated from (malignant) hematopoietic cells isolated by flow cytometry based on expression of specific surface markers and from healthy non-hematopoietic cell types isolated or cultured from tissue biopsies or surgically removed specimen. From various non-hematopoietic cell types, total RNA was also isolated after 4 days of in vitro culture in the presence of IFN-γ or T-cell culture supernatant.
Project description:Hematopoietic stem cells (HSCs) can regenerate the entire hematopoietic system in vivo, providing the most relevant criteria to measure candidate HSCs derived from human embryonic stem cell (hESC) or induced pluripotent stem cell (hiPSC) sources. Here, we show that unlike primitive hematopoietic cells derived from hESCs, phenotypically identical cells derived from hiPSC are more permissive to graft the bone marrow of xenotransplantation recipients. Despite establishment of bone marrow graft, hiPSC-derived cells fail to demonstrate hematopoietic differentiation in vivo. However, once removed from recipient bone marrow, hiPSC-derived grafts were capable of in vitro multilineage hematopoietic differentiation, indicating that xenograft imparts a restriction to in vivo hematopoietic progression. This failure to regenerate multilineage hematopoiesis in vivo was attributed to the inability to downregulate key microRNAs involved in hematopoiesis. Based on these analyses, our study indicates that hiPSCs provide a beneficial source of pluripotent stem cell-derived hematopoietic cells for transplantation compared with hESCs. Since use of the human-mouse xenograft models prevents detection of putative hiPSC-derived HSCs, we suggest that new preclinical models should be explored to fully evaluate cells generated from hiPSC sources. Human pluripotent stem cell-derived hematopoietic cells were isolated and qPCR-based microRNA profiling was performed.
Project description:Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T-cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. In this study, we performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlation between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers. Microarray gene expression analysis was performed on hematological malignancies of different origins and their healthy hematopoietic counterparts as well as on healthy non-hematopoietic cell types from organs that are often targeted in Graft-versus-Host Disease (166 samples in total). Various non-hematopoietic cell types were cultured in the presence of IFN-γ or T-cell culture supernatant to allow gene expression analysis under inflammatory conditions. Malignant and healthy hematopoietic cells were isolated by flow cytometry based on expression of specific surface markers and healthy non-hematopoietic cell types were isolated or cultured from tissue biopsies or surgically removed specimen. Various non-hematopoietic cell types were in vitro cultured for 4 days in the presence of IFN-γ or T-cell culture supernatant to mimic inflammation. The dataset allows comparison of gene expression between hematological malignancies and healthy non-hematopoietic cell types to estimate efficacy and toxicity of immunotherapeutic targets for hematological malignancies.