Project description:This SuperSeries is composed of the following subset Series: GSE39108: UNG shapes the specifity of AID-induced somatic hypermutation in non B cells GSE39114: UNG shapes the specifity of AID-induced somatic hypermutation in B cells Refer to individual Series
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development. Next Generation Sequencing analysis of mutations introduced by AID in activated B lymphocytes from WT and UNG-/- mice (n=4). Activated B cells from AID-/- mice (n=2) were used as negative controls.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development. Next Generation Sequencing analysis of mutations introduced by AID in non B cells. NIH-3T3 cells were co-transduced with mOrangeSTOP and AID-ERM-bM-^@M-^Sexpressing vectors, together with Ugi (UNG inhibitor), UNG, or empty vector as control (n=3). Transduced cells were cultured in the presence of OHT during 11 d. AID-E58Q-ER vector (catalytically inactive form of AID) was used as a negative control in combination with the previously described constructions (n=3).
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Project description:Mismatch repair plays an essential role in reducing the cellular mutation load. Paradoxically, proteins in this pathway produce A . T mutations during the somatic hypermutation of immunoglobulin genes. Although recent evidence implicates the translesional DNA polymerase eta in producing these mutations, it is unknown how this or other translesional polymerases are recruited to immunoglobulin genes, since these enzymes are not normally utilized in conventional mismatch repair. In this report, we demonstrate that A . T mutations were closely associated with transversion mutations at a deoxycytidine. Furthermore, deficiency in uracil-N-glycolase (UNG) or mismatch repair reduced this association. These data reveal a previously unknown interaction between the base excision and mismatch repair pathways and indicate that an abasic site generated by UNG within the mismatch repair tract recruits an error-prone polymerase, which then introduces A . T mutations. Our analysis further indicates that repair tracts typically are approximately 200 nucleotides long and that polymerase eta makes approximately 1 error per 300 T nucleotides. The concerted action of Msh2 and UNG in stimulating A . T mutations also may have implications for mutagenesis at sites of spontaneous cytidine deamination.
Project description:Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1's activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved.
Project description:Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.