Project description:Characterization of gene expression and intron retention in lsm8-1 mutants. Pooled 2 week old rosettes of Col-0 (3 biological replicates) and lsm8-1 mutants (3 biological replicates).
Project description:Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5'CCGG3' restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5' and 3' ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation.
Project description:Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, provide better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. Genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.
Project description:BackgroundOrganisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patterns genome-wide, with an unbiased analysis of coding and noncoding regions of the Arabidopsis genome.ResultsAs in previous studies, we detected a circadian rhythm for approximately 25% of the protein coding genes in the genome. With an unbiased interrogation of the genome, extensive rhythmic introns were detected predominantly in phase with adjacent rhythmic exons, creating a transcript that, if translated, would be expected to produce a truncated protein. In some cases, such as the MYB transcription factor AT2G20400, an intron was found to exhibit a circadian rhythm while the remainder of the transcript was otherwise arrhythmic. In addition to several known noncoding transcripts, including microRNA, trans-acting short interfering RNA, and small nucleolar RNA, greater than one thousand intergenic regions were detected as circadian clock regulated, many of which have no predicted function, either coding or noncoding. Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often for genes whose sense strand was not similarly rhythmic.ConclusionsThis study revealed widespread circadian clock regulation of the Arabidopsis genome extending well beyond the protein coding transcripts measured to date. This suggests a greater level of structural and temporal dynamics than previously known.
Project description:BACKGROUND: Alternative splicing (AS) is a process which generates several distinct mRNA isoforms from the same gene by splicing different portions out of the precursor transcript. Due to the (patho-)physiological importance of AS, a complete inventory of AS is of great interest. While this is in reach for human and mammalian model organisms, our knowledge of AS in plants has remained more incomplete. Experimental approaches for monitoring AS are either based on transcript sequencing or rely on hybridization to DNA microarrays. Among the microarray platforms facilitating the discovery of AS events, tiling arrays are well-suited for identifying intron retention, the most prevalent type of AS in plants. However, analyzing tiling array data is challenging, because of high noise levels and limited probe coverage. RESULTS: In this work, we present a novel method to detect intron retentions (IR) and exon skips (ES) from tiling arrays. While statistical tests have typically been proposed for this purpose, our method instead utilizes support vector machines (SVMs) which are appreciated for their accuracy and robustness to noise. Existing EST and cDNA sequences served for supervised training and evaluation. Analyzing a large collection of publicly available microarray and sequence data for the model plant A. thaliana, we demonstrated that our method is more accurate than existing approaches. The method was applied in a genome-wide screen which resulted in the discovery of 1,355 IR events. A comparison of these IR events to the TAIR annotation and a large set of short-read RNA-seq data showed that 830 of the predicted IR events are novel and that 525 events (39%) overlap with either the TAIR annotation or the IR events inferred from the RNA-seq data. CONCLUSIONS: The method developed in this work expands the scarce repertoire of analysis tools for the identification of alternative mRNA splicing from whole-genome tiling arrays. Our predictions are highly enriched with known AS events and complement the A. thaliana genome annotation with respect to AS. Since all predicted AS events can be precisely attributed to experimental conditions, our work provides a basis for follow-up studies focused on the elucidation of the regulatory mechanisms underlying tissue-specific and stress-dependent AS in plants.
Project description:A casual look at the behavior and function of animals and plants clearly shows that many physiological processes are periodic and tied to cyclical changes in a day. As suggested by the persistence of some rhythms in the absence of external cues, organisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patterns genome wide, with an unbiased analysis of coding and noncoding regions of the Arabidopsis genome. As in previous studies, we detected a circadian rhythm for approximately 25% of the protein coding genes in the genome. With an unbiased interrogation of the genome, extensive rhythmic introns were detected predominantly in phase with adjacent rhythmic exons creating a transcript that if translated would be expected to produce a truncated protein. In some cases such as the MYB transcription factor PHOSPATE STARVATION RESPONSE1, an intron was found to exhibit a circadian rhythm while the remainder of the transcript was otherwise arrhythmic. In addition to several known non-coding transcripts including miRNA, trans-acting siRNA, and snoRNA, greater than one thousand intergenic regions were detected as circadian clock regulated, many of which have no predicted function, either coding or non-coding. Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often for genes whose sense strand was not similarly rhythmic. This study revealed widespread circadian clock regulation of the Arabidopsis genome extending well beyond the protein coding transcripts measured to date. This suggests a greater level of structural and temporal dynamics than previously known.
Project description:We have developed a method for interpreting genomic tiling array data, implemented as the program TranscriptionDetector. Probed loci expressed above background are identified by combining replicates in a way that makes minimal assumptions about the data. We performed medium-resolution Anopheles gambiae tiling array experiments and found extensive transcription of both coding and non-coding regions. Our method also showed improved detection of transcriptional units when applied to high-density tiling array data for ten human chromosomes.
Project description:Using a maskless photolithography method, we produced DNA oligonucleotide microarrays with probe sequences tiled throughout the genome of the plant Arabidopsis thaliana. RNA expression was determined for the complete nuclear, mitochondrial, and chloroplast genomes by tiling 5 million 36-mer probes. These probes were hybridized to labeled mRNA isolated from liquid grown T87 cells, an undifferentiated Arabidopsis cell culture line. Transcripts were detected from at least 60% of the nearly 26,330 annotated genes, which included 151 predicted genes that were not identified previously by a similar genome-wide hybridization study on four different cell lines. In comparison with previously published results with 25-mer tiling arrays produced by chromium masking-based photolithography technique, 36-mer oligonucleotide probes were found to be more useful in identifying intron-exon boundaries. Using two-dimensional HPLC tandem mass spectrometry, a small-scale proteomic analysis was performed with the same cells. A large amount of strongly hybridizing RNA was found in regions "antisense" to known genes. Similarity of antisense activities between the 25-mer and 36-mer data sets suggests that it is a reproducible and inherent property of the experiments. Transcription activities were also detected for many of the intergenic regions and the small RNAs, including tRNA, small nuclear RNA, small nucleolar RNA, and microRNA. Expression of tRNAs correlates with genome-wide amino acid usage.
Project description:Clinical DNA is often available in limited quantities requiring whole-genome amplification for subsequent genome-wide assessment of copy-number variation (CNV) by array-CGH. In pre-implantation diagnosis and analysis of micrometastases, even merely single cells are available for analysis. However, procedures allowing high-resolution analyses of CNVs from single cells well below resolution limits of conventional cytogenetics are lacking. Here, we applied amplification products of single cells and of cell pools (5 or 10 cells) from patients with developmental delay, cancer cell lines and polar bodies to various oligo tiling array platforms with a median probe spacing as high as 65 bp. Our high-resolution analyses reveal that the low amounts of template DNA do not result in a completely unbiased whole genome amplification but that stochastic amplification artifacts, which become more obvious on array platforms with tiling path resolution, cause significant noise. We implemented a new evaluation algorithm specifically for the identification of small gains and losses in such very noisy ratio profiles. Our data suggest that when assessed with sufficiently sensitive methods high-resolution oligo-arrays allow a reliable identification of CNVs as small as 500 kb in cell pools (5 or 10 cells), and of 2.6-3.0 Mb in single cells.