Human monocyte-derived dendritic cells treated with U0126 or SB203580
Ontology highlight
ABSTRACT: Identification of MEK-ERK or p38MAPK dependent genes in human monocyte derived dendritic cells. Dendritic cells (DC) promote tolerance or immunity depending on their maturation state. Previous studies have revealed that DC maturation is enhanced or accelerated upon MEK-ERK signaling pathway inhibition. We have now determined the contribution of MEK-ERK activation to the profile of gene expression of human immature monocyte-derived dendritic cells (MDDC) and peripheral blood myeloid DC. ERK inhibition altered the expression of genes that mediate CCL19-directed migration (CCR7) and LDL binding (CD36, SCARB1, OLR1, CXCL16) by immature DC. Besides, ERK upregulated CCL2 expression while impaired the expression of DC maturation markers (RUNX3, ITGB7, IDO1). MEK-ERK-regulated genes exhibited an over-representation of cognate sequences for the Aryl Hydrocarbon Receptor (AhR) transcription factor, and we show that AhR mediates some of the ERK-dependent transcriptional effects in DC. Therefore, MEK-ERK signaling pathway regulates antigen capture, lymph node homing and the acquisition of maturation-associated genes, and its contribution to the maintenance of the immature state of MDDC and myeloid DC is partly dependent on the activity of AhR. Since pharmacological modulation of the MEK-ERK signaling pathway has been proposed as a potential therapeutic strategy for cancer, our findings indicate that ERK inhibitors might influence the generation of anti-tumor responses through regulation of critical DC effector functions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE39745 | GEO | 2013/05/03
SECONDARY ACCESSION(S): PRJNA171700
REPOSITORIES: GEO
ACCESS DATA