Project description:How do high-level visual regions process the temporal aspects of our visual experience? While the temporal sensitivity of early visual cortex has been studied with fMRI in humans, temporal processing in high-level visual cortex is largely unknown. By modeling neural responses with millisecond precision in separate sustained and transient channels, and introducing a flexible encoding framework that captures differences in neural temporal integration time windows and response nonlinearities, we predict fMRI responses across visual cortex for stimuli ranging from 33 ms to 20 s. Using this innovative approach, we discovered that lateral category-selective regions respond to visual transients associated with stimulus onsets and offsets but not sustained visual information. Thus, lateral category-selective regions compute moment-to-moment visual transitions, but not stable features of the visual input. In contrast, ventral category-selective regions process both sustained and transient components of the visual input. Our model revealed that sustained channel responses to prolonged stimuli exhibit adaptation, whereas transient channel responses to stimulus offsets are surprisingly larger than for stimulus onsets. This large offset transient response may reflect a memory trace of the stimulus when it is no longer visible, whereas the onset transient response may reflect rapid processing of new items. Together, these findings reveal previously unconsidered, fundamental temporal mechanisms that distinguish visual streams in the human brain. Importantly, our results underscore the promise of modeling brain responses with millisecond precision to understand the underlying neural computations.
Project description:Background and aims:Assessing the resilience of plant-animal interactions is critical to understanding how plant communities respond to habitat disturbances. Most ecosystems experience some level of natural disturbance (e.g. wildfires) to which many organisms are adapted. Wildfires have structured biotic communities for millennia; however, the effects of fire on interactions such as pollination have only recently received attention. A few studies have shown that generalist plants can buffer the impact of fires by pollinator replacement, suggesting that the resilience to disturbance could depend on the level of specialization of the interactions. Here, we hypothesize that (1) fires could impose negative effects on plants with specialized pollination systems, and (2) in large wildfires, these negative effects will be stronger with increasing distance inside the burnt area because pollinators will need more time to recolonize. Methods:These questions were tested in the specialized pollination system of a widespread Mediterranean palm, Chamaerops humilis. The post-fire pollination resilience was assessed in replicated wildfires representing three post-fire ages by measuring the abundance of beetle pollinators and by estimating fruit set (i.e. the proportion of flowers setting fruits) in burnt and unburnt areas. To test for distance effects, plants were sampled along transects inside the burnt area. Key Results:Despite a marked post-fire decline in the specialist pollinator, exacerbated by the distance from the fire's edge, the palm's fruit set was barely affected. The temporary replacement by a sap beetle at burnt sites - an effective pollinator that had not been previously recognized - provided post-fire reproductive resilience. Conclusions:Differential pollinator responses to disturbance can ensure plant success even in plants with only two functionally similar pollinators. This highlights the importance of pollinator replacement and dynamics for the resilience of interactions and ultimately of plant reproduction in disturbance-prone ecosystems.
Project description:BackgroundInflammation helps regulate normal growth and tissue repair. Although bone morphogenetic proteins (BMPs) and inflammation are known contributors to abnormal bone formation, how these pathways interact in ossification remains unclear.MethodsWe examined this potential link in patients with fibrodysplasia ossificans progressiva (FOP), a genetic condition of progressive heterotopic ossification caused by activating mutations in the Activin A type I receptor (ACVR1/ALK2). FOP patients show exquisite sensitivity to trauma, suggesting that BMP pathway activation may alter immune responses. We studied primary blood, monocyte, and macrophage samples from control and FOP subjects using multiplex cytokine, gene expression, and protein analyses; examined CD14+ primary monocyte and macrophage responses to TLR ligands; and assayed BMP, TGF-β activated kinase 1 (TAK1), and NF-κB pathways.ResultsFOP subjects at baseline without clinically evident heterotopic ossification showed increased serum IL-3, IL-7, IL-8, and IL-10. CD14+ primary monocytes treated with the TLR4 activator LPS showed increased CCL5, CCR7, and CXCL10; abnormal cytokine/chemokine secretion; and prolonged activation of the NF-κB pathway. FOP macrophages derived from primary monocytes also showed abnormal cytokine/chemokine secretion, increased TGF-β production, and p38MAPK activation. Surprisingly, SMAD phosphorylation was not significantly changed in the FOP monocytes/macrophages.ConclusionsAbnormal ACVR1 activity causes a proinflammatory state via increased NF-κB and p38MAPK activity. Similar changes may contribute to other types of heterotopic ossification, such as in scleroderma and dermatomyositis; after trauma; or with recombinant BMP-induced bone fusion. Our findings suggest that chronic antiinflammatory treatment may be useful for heterotopic ossification.
Project description:Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes. Further, these mice also harbor activated mast cells in the central cornea, which contributes to pathological corneal neovascularization and fibrosis. This breach of corneal avascularity and immune status is associated with the growth of the tumor pannus, resulting in a corneal stroma that is nearly four times its normal size. In corneas with advanced disease, some axons became ectopically myelinated, and the disruption of Remak bundles is evident. To determine whether myofibroblast differentiation was linked to vimentin, we examined the levels and phosphorylation status of this fibrotic biomarker. Concomitant with the early upregulation of vimentin, a serine 38-phosphorylated isoform of vimentin (pSer38vim) increased in SCs, which was attributed primarily to the soluble fraction of protein-not the cytoskeletal portion. However, the overexpressed pSer38vim became predominantly cytoskeletal with the growth of the corneal tumor. Our findings demonstrate an unrecognized function of ERK1/2 in the maintenance of corneal homeostasis, wherein its over-activation in SCs promotes corneal neurofibromas. This study is also the first report of a genetically engineered mouse that spontaneously develops a corneal tumor.
Project description:Schizophrenia patients (SZ) show early visual processing deficits in many, but not all, tasks. These deficits may be associated with dysregulation of intrinsic oscillatory activity that compromises signal-to-noise in the SZ brain. This question was studied using visual steady-state stimulation and post-steady-state presentation of transient visual stimuli. SZ had higher intrinsic oscillatory activity at the steady-state stimulation frequency (12.5 Hz) and at the 6.25 Hz subharmonic, showed a significant decrease in visual steady-state magnitude over 2s of stimulation, and were unable to promptly terminate the steady-state response following stimulation offset. If adjustment for levels of intrinsic brain activity were made, however, it would have appeared that SZ had activity of similar magnitude as healthy subjects following steady-state stimulus termination, indicating that such adjustments could substantially alter theoretical interpretations. Visual evoked potential abnormalities (N1/P2 amplitudes) present among SZ at the initiation of steady-state stimulation were less apparent in the 750 ms immediately following steady-state stimulation offset. Higher intrinsic oscillatory brain activity may be a fundamental characteristic of SZ that merits further evaluation for understanding this disorder's neuropathological correlates and associated symptomatology.
Project description:Tetanus-induced heterosynaptic depression in the hippocampus is a key cellular mechanism in neural networks implicated in learning and memory. A growing body of evidence indicates that glial cells are important modulators of synaptic functions, but very little is known about their role in heterosynaptic plasticity. We examined the role of glial cells in heterosynaptic depression, knowing that tetanization and NMDA application caused depression of synaptic field responses (fEPSPs) and induced Ca2+ rise in glial cells. Here we report that chelating Ca2+ in a glial syncytium interfered with heterosynaptic depression and NMDA-induced fEPSP depression, suggesting that Ca2+ activation of glial cells is necessary for heterosynaptic depression. The NMDA-induced Ca2+ rise in glial cells was sensitive to tetrodotoxin and reduced by the GABAB antagonist CGP55845. Both heterosynaptic depression and simultaneous Ca2+ activation of glial cells were prevented by CGP55845, suggesting an involvement of the GABAergic network in glial activation and heterosynaptic depression. Also, the GABAB agonist baclofen caused both a Ca2+ rise in glial cells and fEPSP depression. Heterosynaptic depression, as well as NMDA- and baclofen-induced depression, were attenuated by an A1 antagonist, cyclopentyl-theophylline, whereas glial cell activation was not, indicating a role of adenosine downstream of glial activation. Finally, heterosynaptic depression requires ATP degradation because ectonucleotidase inhibitors reduced this plasticity. Our work indicates that Ca2+ activation of glial cells is necessary for heterosynaptic depression, which involves the sequential interaction of Schaffer collaterals, the GABAergic network, and glia. Thus, glial and neuronal networks are functionally associated during the genesis of heterosynaptic plasticity at mammalian central excitatory synapses.
Project description:In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.
Project description:Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA). We initially observed that in triple-negative breast cancer, where AURKA is typically overexpressed, the short isoform is predominant and this correlates with faster relapse times of patients. The short isoform is characterized by higher translational efficiency since translation and decay rate of the long isoform are targeted by hsa-let-7a tumor-suppressor miRNA. Additionally, hsa-let-7a regulates the cell cycle periodicity of translation of the long isoform, whereas the short isoform is translated highly and constantly throughout interphase. Finally, disrupted production of the long isoform led to an increase in proliferation and migration rates of cells. In summary, we uncovered a new mechanism dependent on the cooperation between APA and miRNA targeting likely to be a route of oncogenic activation of human AURKA.
Project description:The therapeutic and psychoactive properties of cannabinoids have long been recognized. The type 2 receptor for cannabinoids (CB2) has emerged as an important therapeutic target in several pathologies, as it mediates beneficial effects of cannabinoids while having little if any psychotropic activity. Difficulties associated with the development of CB2-based therapeutic agents have been related to its intricate pharmacology, including the species specificity and functional selectivity of the CB2-initiated responses. We postulated that a plasmalemmal or subcellular location of the receptor may contribute to the differential signaling pathways initiated by its activation. To differentiate between these two, we used extracellular and intracellular administration of CB2 ligands and concurrent calcium imaging in CB2-expressing U2OS cells. We found that extracellular administration of anandamide was ineffective, whereas 2-arachidonoyl glycerol (2-AG) and WIN55,212-2 triggered delayed, CB2-dependent Ca(2+) responses that were Gq protein-mediated. When microinjected, all agonists elicited fast, transient, and dose-dependent elevations in intracellular Ca(2+) concentration upon activation of Gq-coupled CB2 receptors. The CB2 dependency was confirmed by the sensitivity to AM630, a selective CB2 antagonist, and by the unresponsiveness of untransfected U2OS cells to 2-AG, anandamide, or WIN55,212-2. Moreover, we provide functional and morphological evidence that CB2 receptors are localized at the endolysosomes, while their activation releases Ca(2+) from inositol 1,4,5-trisphosphate-sensitive- and acidic-like Ca(2+) stores. Our results support the functionality of intracellular CB2 receptors and their ability to couple to Gq and elicit Ca(2+) signaling. These findings add further complexity to CB2 receptor pharmacology and argue for careful consideration of receptor localization in the development of CB2-based therapeutic agents.
Project description:Sounds are temporal stimuli decomposed into numerous elementary components by the auditory nervous system. For instance, a temporal to spectro-temporal transformation modelling the frequency decomposition performed by the cochlea is a widely adopted first processing step in today's computational models of auditory neural responses. Similarly, increments and decrements in sound intensity (i.e., of the raw waveform itself or of its spectral bands) constitute critical features of the neural code, with high behavioural significance. However, despite the growing attention of the scientific community on auditory OFF responses, their relationship with transient ON, sustained responses and adaptation remains unclear. In this context, we propose a new general model, based on a pair of linear filters, named AdapTrans, that captures both sustained and transient ON and OFF responses into a unifying and easy to expand framework. We demonstrate that filtering audio cochleagrams with AdapTrans permits to accurately render known properties of neural responses measured in different mammal species such as the dependence of OFF responses on the stimulus fall time and on the preceding sound duration. Furthermore, by integrating our framework into gold standard and state-of-the-art machine learning models that predict neural responses from audio stimuli, following a supervised training on a large compilation of electrophysiology datasets (ready-to-deploy PyTorch models and pre-processed datasets shared publicly), we show that AdapTrans systematically improves the prediction accuracy of estimated responses within different cortical areas of the rat and ferret auditory brain. Together, these results motivate the use of our framework for computational and systems neuroscientists willing to increase the plausibility and performances of their models of audition.