Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness
Ontology highlight
ABSTRACT: Both epigenetic and splicing regulation contribute to tumor progression, but the potential links between these two levels of gene-expression regulation in pathogenesis are not well understood. Here, we report that the mouse and human RNA helicases ddx17 and ddx5 contribute to tumor-cell invasiveness by regulating alternative splicing of several DNA- and chromatin-binding factors, including the macroH2A1 histone. We show that macroH2A1 splicing isoforms differentially regulate the transcription of a set of genes involved in redox metabolism. In particular, the SOD3 gene that encodes the extracellular superoxide dismutase and plays a part in cell migration is regulated in an inverse manner by macroH2A1 splicing isoforms. These findings reveal a new regulatory pathway in which splicing factors control the expression of histone-variant isoforms that in turn drive a transcription program to switch tumor cells to an invasive phenotype.
ORGANISM(S): Mus musculus
PROVIDER: GSE40737 | GEO | 2012/09/11
SECONDARY ACCESSION(S): PRJNA174786
REPOSITORIES: GEO
ACCESS DATA