Regulation of Puf2 Expression is Critical for Plasmodium Sporozoite Development and Maintenance of Sporozoite Transmissibility
Ontology highlight
ABSTRACT: Malaria’s cycle of infection requires parasite transmission between a mosquito vector and a vertebrate host. Plasmodium regulates transmission by translationally repressing specific mRNAs until their products are needed. We demonstrate that the Plasmodium yoelii Pumilio-FBF family member Puf2 allows the sporozoite to retain its infectivity in the mosquito salivary glands while awaiting transmission. Puf2 mediates this critical feature solely through its RNA-Binding Domain (RBD) likely by protecting and silencing specific mRNAs. Puf2 storage granules are distinct from stress granules and P-bodies and dissolve rapidly after infection of hepatocytes, likely releasing the protected and silenced transcripts for ‘just-in-time’ translation by early exoerythrocytic forms (EEFs). Further corroborating this model, pypuf2- sporozoites have no apparent defect in host infection early after invading the salivary glands, but become progressively noninfectious and subsequently prematurely transform into EEFs during prolonged salivary gland residence. In contrast, the premature overexpression of Puf2 in oocysts causes striking deregulation of sporozoite maturation, resulting in fewer oocyst sporozoites that are non-infectious and unable to colonize the salivary glands. Maintenance of Puf2 expression in liver stage parasites produces no phenotype, suggesting that a window of permissive expression exists. Finally, by conducting the first comparative RNAseq analysis of Plasmodium sporozoites, we have uncovered that Puf2 may play a role in both the protection of specific transcripts as well as RNA turnover via the CCR4/Not complex. These findings uncover requirements for maintaining a window of opportunity for the malaria parasite to accommodate the unpredictable moment of transmission from mosquito to vertebrate host.
ORGANISM(S): Plasmodium yoelii yoelii 17XNL
PROVIDER: GSE41873 | GEO | 2012/10/27
SECONDARY ACCESSION(S): PRJNA178363
REPOSITORIES: GEO
ACCESS DATA