NF-E2, FLI1 and RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes
Ontology highlight
ABSTRACT: Mutations in mouse and human Nfe2, Fli1 and Runx1 cause thrombocytopenia. We applied genome- wide chromatin dynamics and ChIP-seq to determine these transcription factors’ (TFs) activities in terminal megakaryocyte (MK) maturation. Enhancers with H3K4me2-marked nucleosome pairs were most enriched for NF-E2, FLI and RUNX sequence motifs, suggesting that this TF triad controls much of the late MK program. ChIP-seq revealed NF-E2 occupancy near previously implicated target genes, whose expression is compromised in Nfe2-null cells, and many other genes that become active late in MK differentiation. FLI and RUNX were also the motifs most enriched near NF-E2 binding sites and ChIP-seq implicated FLI1 and RUNX1 in activation of late MK, including NF-E2-dependent, genes. Histones showed limited activation in regions of single TF binding, while enhancers that bind NF-E2 and either RUNX1, FLI1 or both TFs gave the highest signals for TF occupancy and H3K4me2; these enhancers associated best with genes activated late in MK maturation. Thus, three essential TFs co- occupy late-acting cis-elements and show evidence for additive activity at genes responsible for platelet assembly and release. These findings provide a rich dataset of TF and chromatin dynamics in primary MK and explain why individual TF losses cause thrombopocytopenia.
Project description:Combinatorial transcription factor (TF) interactions control cellular phenotypes and therefore underpin stem cell formation, maintenance and differentiation. Here we report the genome-wide binding patterns and combinatorial interactions for 10 key regulators of blood stem/progenitor cells (Scl/Tal1, Lyl1, Lmo2, Gata2, Runx1, Meis1, Pu.1, Erg, Fli-1, Gfi1b) thus providing the most comprehensive TF dataset for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns followed by functional validation revealed the following: First, a previously unrecognized combinatorial interaction between a heptad of TFs (Scl, Lyl1, Lmo2, Gata2, Runx1, Erg, Fli-1). Second, we implicate direct protein-protein interactions between four key regulators (Runx1, Gata2, Scl, Erg) in stabilising complex binding to DNA. Third, Runx1+/-::Gata2+/- compound heterozygous mice are not viable with severe haematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells. 10 Samples (9 Transcription Factors and 1 Histone Modification) and 1 Control (IgG). All from the same cell line, a haematopoietic progenitor cell line (HPC-7).
Project description:Combinatorial transcription factor (TF) interactions control cellular phenotypes and therefore underpin stem cell formation, maintenance and differentiation. Here we report the genome-wide binding patterns and combinatorial interactions for 10 key regulators of blood stem/progenitor cells (Scl/Tal1, Lyl1, Lmo2, Gata2, Runx1, Meis1, Pu.1, Erg, Fli-1, Gfi1b) thus providing the most comprehensive TF dataset for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns followed by functional validation revealed the following: First, a previously unrecognized combinatorial interaction between a heptad of TFs (Scl, Lyl1, Lmo2, Gata2, Runx1, Erg, Fli-1). Second, we implicate direct protein-protein interactions between four key regulators (Runx1, Gata2, Scl, Erg) in stabilising complex binding to DNA. Third, Runx1+/-::Gata2+/- compound heterozygous mice are not viable with severe haematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.
Project description:Megakaryocyte (MK) differentiation is well described in morphologic terms but its molecular counterparts and the basis for platelet release are incompletely understood. We profiled mRNA expression in populations of primary mouse MKs representing successive differentiation stages. Genes associated with DNA replication are highly expressed in young MKs, in parallel with endomitosis. Intermediate stages are characterized by disproportionate expression of genes associated with the cytoskeleton, cell migration and G-protein signaling, whereas terminally mature MKs accumulate hemostatic factors, including many membrane proteins. We used these expression profiles to extract a reliable panel of molecular markers for MKs of early, intermediate or advanced differentiation, and establish its value using mouse models of defective thrombopoiesis resulting from absence of GATA-1, NF-E2 or tubulinß1. Computational analysis of the promoters of late-expressed MK genes identified new candidate targets for NF-E2, a critical transcriptional regulator of platelet release. One such gene encodes the kinase adaptor protein LIMS1/PINCH1, which is highly expressed in MKs and platelets and significantly reduced in NF-E2-deficient cells. Transactivation studies and chromatin immunoprecipitation implicate Lims1 as a direct target of NF-E2 regulation. Attribution of stagespecific genes, in combination with various applications, thus constitutes a powerful way to study MK differentiation and platelet biogenesis Keywords: expression profiling differentiation megakaryocyte
Project description:RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MKs) to characterize the Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1-bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1-bound regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. The data provides the first example of genome-wide Runx1/p300 occupancy in maturating FL-MK, unravels the Runx1-regulated program controlling MK maturation in vivo and identifies its bona fide regulated genes. It advances our understanding of the molecular events that upon mutations in RUNX1 lead to the predisposition to familial platelet disorders and FPD-AML. Examination of RUNX1 and P300 binding in WT mouse megakaryoctye cells using ChIP-Seq. The supplementary 'GSE45372_PeakList.txt' file includes a list of regions identified as binding for P300 or RUNX1 or both.
Project description:RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MKs) to characterize the Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1-bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1-bound regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. The data provides the first example of genome-wide Runx1/p300 occupancy in maturating FL-MK, unravels the Runx1-regulated program controlling MK maturation in vivo and identifies its bona fide regulated genes. It advances our understanding of the molecular events that upon mutations in RUNX1 lead to the predisposition to familial platelet disorders and FPD-AML. Gene expression profiles of mature megakaryocytes taken from fetal livers of megakaryocyte-specific Runx1 knockout mice, using Runx1F/F/Pf4-Cre mice versus control (WT) mice.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.