Project description:We studied the variations of mRNA amounts after Evi1 knockdown or Flag-Evi1 overexpression in SKOV-3 cells. Despites Evi1 discovery in 1988, its recognized role as a dominant oncogene in myeloid leukemia and more recently in epithelial cancers, only a few target genes were known and it was not clear why Evi1 was involved in cancer progression. Here we obtained the genomic binding occupancy and expression data for Evi1 in human ovarian carcinoma cells. We identified numerous Evi1 target cancer genes and genes controlling cell migration and adhesion. Moreover, we characterized a transcriptional cooperation between AP1 and Evi1 that regulated proliferation and adhesion through a feed-forward loop. Furthermore, this study provides human genome-wide mapping and downstream analyses for Evi1 that will be useful for the research community.
Project description:We studied the variations of mRNA amounts after Evi1 knockdown or Flag-Evi1 overexpression in SKOV-3 cells. Despites Evi1 discovery in 1988, its recognized role as a dominant oncogene in myeloid leukemia and more recently in epithelial cancers, only a few target genes were known and it was not clear why Evi1 was involved in cancer progression. Here we obtained the genomic binding occupancy and expression data for Evi1 in human ovarian carcinoma cells. We identified numerous Evi1 target cancer genes and genes controlling cell migration and adhesion. Moreover, we characterized a transcriptional cooperation between AP1 and Evi1 that regulated proliferation and adhesion through a feed-forward loop. Furthermore, this study provides human genome-wide mapping and downstream analyses for Evi1 that will be useful for the research community. 16 samples were collected. Each condition was done in 4 replicates, collected 65 hours after transfection. Transfections with control siRNA or Flag-expressing vector were used as controls.
Project description:To test the deposition of FLAG-H2AK5acK9ac mark across the genome, ChIP experiments coupled high-throughput sequencing were performed using antibodies against FLAG, H2AK5ac and H2AK9ac. Keywords: Genome binding/occupancy profiling by high throughput sequencing
Project description:We compared the genome occupancy for FLAG-tagged versions of the ETS factors ERG and EHF in the normal prostate epithelial cell line RWPE1. Our in vitro binding studies support a model whereby oncogenic ETS factors like ERG bind cooperativly with AP1 factors at closly spaced ETS-AP1 sites, while certain non-oncogenic factors like EHF bind anti-cooperatively with AP1 at the same sites. ETS and AP1 binding motifs were enriched in both ChIP datasets, but the ERG-FLAG bound reginos contained a much higher percentage of ETS-AP1 sites spaced in close proximity, consistent with our in vitro binding data.
Project description:Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at 2q31.1 (P = 7.5 × 10(-12)) and rs688187 at 19q13.2 (P = 6.8 × 10(-13)). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10(-4), false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the occupancy of H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE). This dataset analyzes the occupancy of FLAG-H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE) of Flag-H2be transgenic mice, which express a FLAG-tagged version of H2BE from the H2be promoter. There are 2 replicates for each ChIP (FLAG and H3).