Project description:BackgroundAbout 80% of today's land plants are able to establish an arbuscular mycorrhizal (AM) symbiosis with Glomeromycota fungi to improve their access to nutrients and water in the soil. On the molecular level, the development of AM symbioses is only partly understood, due to the asynchronous development of the microsymbionts in the host roots. Although many genes specifically activated during fungal colonization have been identified, genome-wide information on the exact place and time point of their activation remains limited.ResultsIn this study, we relied on a combination of laser-microdissection and the use of Medicago GeneChips to perform a genome-wide analysis of transcription patterns in defined cell-types of Medicago truncatula roots mycorrhized with Glomus intraradices. To cover major stages of AM development, we harvested cells at 5-6 and at 21 days post inoculation (dpi). Early developmental stages of the AM symbiosis were analysed by monitoring gene expression in appressorial and non-appressorial areas from roots harbouring infection units at 5-6 dpi. Here, the use of laser-microdissection for the first time enabled the targeted harvest of those sites, where fungal hyphae first penetrate the root. Circumventing contamination with developing arbuscules, we were able to specifically detect gene expression related to early infection events. To cover the late stages of AM formation, we studied arbusculated cells, cortical cells colonized by intraradical hyphae, and epidermal cells from mature mycorrhizal roots at 21 dpi. Taken together, the cell-specific expression patterns of 18014 genes were revealed, including 1392 genes whose transcription was influenced by mycorrhizal colonization at different stages, namely the pre-contact phase, the infection of roots via fungal appressoria, the subsequent colonization of the cortex by fungal hyphae, and finally the formation of arbuscules. Our cellular expression patterns identified distinct groups of AM-activated genes governing the sequential reprogramming of host roots towards an accommodation of microsymbionts, including 42 AM-activated transcription factor genes.ConclusionsOur genome-wide analysis provides novel information on the cell-specific activity of AM-activated genes during both early and late stages of AM development, together revealing the road map of fine-tuned adjustments of transcript accumulation within root tissues during AM fungal colonization.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during late stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in late stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages. Medicago truncatula Gaertn M-bM-^@M-^XJemalongM-bM-^@M-^Y genotype A17 plantlets were grown in the climate chamber. Plants grown for the collection appressorial root areas (APP) and the corresponding non-appressorial root areas (NAP) were mycorrhized after 3 weeks and roots were harvested at 5-6 dpi.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during late stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in late stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages. Medicago truncatula Gaertn M-bM-^@M-^XJemalongM-bM-^@M-^Y genotype A17 plantlets were grown in the climate chamber. Plants grown for the collection of root cortical cells containing arbuscules (ARB), root cortical cells from mycorrhizal roots (CMR), and root epidermal cells from mycorrhizal roots (EPI) were mycorrhized after 2 weeks with Glomus intraradices and mycorrhizal roots were harvested at around 21 days post inoculation (dpi).
Project description:Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.
Project description:Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below -0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below -1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures.
Project description:Arbuscular mycorrhiza (AM) is a widespread symbiosis between plant roots and fungi of the Glomeromycotina, which improves nutrient uptake by plants. The molecular mechanisms underlying development and function of the symbiosis are subject to increasing research activity. Since AM occurs in the soil, most studies targeting a molecular understanding of AM development and function, use solid substrates for co-cultivating plants and AM fungi. However, for some experiments very clean roots, highly controlled nutrient conditions or applications of defined concentrations of signaling molecules (such as hormones) or other small chemicals (such as synthetic inhibitors or signaling agonists) are needed. To this end, hydroponics has been widely used in research on mechanisms of plant nutrition and some hydroponic systems were developed for AM fungal spore amplification. Here, we present a hydroponics set-up, which can be successfully utilized for experimental root colonization assays. We established a "tip-wick" system based on pipette tips and rock wool wicks for co-cultivation of AM fungi with small model plants such as Lotus japonicus. A larger "Falcon-wick" system using Falcon tubes and rockwool wicks was developed for larger model plants such as rice. The hydroponic system can also be employed for growing L. japonicus hairy roots after transformation by Agrobacterium rhizogenes, thus circumventing the laborious cultivation on agar medium-containing Petri dishes during hairy root development. The tip-wick and Falcon-wick systems are easy to use and can be built with low cost, conventional and reusable lab plastic ware and a simple aquarium pump.