Direct ChIP-bisulfite sequencing reveals a role of H3K27me3 mediating aberrant hypermethylation of promoter CpG islands in cancer cells (RNA-seq)
Ontology highlight
ABSTRACT: Aberrant DNA hypermethylation of CpG island (CGI) promoters are associated with transcriptional repression of many tumor suppressor genes and lead to tumor progression in many cancers. Most recently, one research group observed that aberrantly hypermethylated genes in multiple cancers are already repressed, but their promoters are maintained in a hypomethylated state in pre-cancerous tissues.Their studies didn't provide a clue to explain by what mechanisms those genes were repressed in pre-cancerous tissues. Another research group found that many genes with de novo promoter hypermethylation in colon cancer were among the subset of genes "bivalently" marked in embryonic stem cells and adult stem/progenitor cells by repressive Polycomb group proteins (PcG), which are known for maintaining low, but poised, transcription.These observations provide a clue that CGI promoter hypermethylation in cancers is associated with PcG target genes in pre-cancerous tissues.we took advantage of ChIP-BS-seq technology and applied it to examine H3K27me3 and H3K4me3 profiles for one normal lymphoblastoid cell line (YH) and three cancer cell lines including one cervical cancer cell line (Hela) and two gastric cancer (GC) cell lines (BGC-823 and AGS).
ORGANISM(S): Homo sapiens
PROVIDER: GSE43093 | GEO | 2014/07/01
SECONDARY ACCESSION(S): PRJNA184402
REPOSITORIES: GEO
ACCESS DATA