Project description:During Schizosaccharomyces pombe meiotic prophase, homologous chromosomes are co-aligned by linear elements (LinEs) analogous to the axial elements of the synaptonemal complex (SC) in other organisms. LinE proteins also promote the formation of meiotic DNA double-strand breaks (DSBs), the precursors of cross-overs. Rec10 is required for essentially all DSBs and recombination, and three others (Rec25, Rec27, and Mug20) are protein determinants of DSB hotspots - they bind DSB hotspots with high specificity and are required for DSB formation there. These four LinE proteins co-localize in the nucleus in an interdependent way, suggesting they form a complex. We used random mutagenesis to uncover recombination-deficient missense mutants with novel properties. Some missense mutations changed essential residues conserved among Schizosaccharomyces species. DSB formation, gene conversion, and crossing-over were coordinately reduced in the mutants tested. Based on our mutant analysis, we revised the rec27 open reading frame: the new start codon is in the previously annotated first intron. Genetic and fluorescence-microscopy assays indicated that the Rec10 N- and C-terminal regions have complex interactions with Rec25. These mutants are a valuable resource to elucidate further how LinE proteins and the related SCs of other species regulate meiotic DSB formation to form crossovers crucial for meiosis.
Project description:Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. We report here the discovery that three coiled-coil proteins -- Rec25, Rec27, and Mug20 -- bind essentially all hotspots with unprecedented, high specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate that these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose here a new paradigm for hotspot determination and crossover control by linear element proteins.
Project description:Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. We report here the discovery that three coiled-coil proteins -- Rec25, Rec27, and Mug20 -- bind essentially all hotspots with unprecedented, high specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate that these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose here a new paradigm for hotspot determination and crossover control by linear element proteins.
Project description:Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hot spots, than in other regions of the genome. What distinguishes hot spots from cold regions is an unsolved problem, although transcription factors determine some hot spots. We report the discovery that three coiled-coil proteins-Rec25, Rec27, and Mug20-bind essentially all hot spots with great specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hot spots. Our results indicate these hot spot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hot spots. We propose a paradigm for hot spot determination and crossover control by linear element proteins.
Project description:Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located approximately 65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans.