Project description:Myc ChIP in HeLa cells and 2091 fibroblasts Keywords: ChIP-chip HeLa cells, quiescent 2091 fibroblasts, and serum stimulated 2091 fibroblasts were used for Myc ChIP reactions.
Project description:Background: MYC is a transcription factor encoded by the c-MYC gene (thereafter termed MYC). MYC is key transcription factor involved in many central cellular processes including ribosomal biogenesis. MYC is overexpressed in the majority of human tumours including aggressive B-cell lymphoma especially Burkitt's lymphoma. Although Burkitt's lymphoma is a highlight example for MYC overexpression due to a chromosomal translocation, no global analysis of MYC binding sites by chromatin immunoprecipitation (ChIP) followed by global next generation sequencing (ChIP-Seq) has been conducted so far in Burkitt's lymphoma. Methodology/Principal Findings: ChIP-Seq was performed with a MYC-specific antibody giving rise to 7,054 predicted MYC binding sites after bioinformatics analysis of a total of 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes and the cell cycle demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC binding sites also accumulate in genes typically expressed in mature B-cells. To assess the functional consequences of altered MYC binding, the ChIP-Seq data were supplemented with siRNA mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in B-cell function were up-regulated in response to MYC silencing. Conclusion/Significance: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in Burkitt's lymphoma and sheds further light on the enormous complexity of the MYC regulatory network. Especially our observation that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlights an interesting aspect of BurkittM-BM-4s lymphoma biology. [ChIP-Seq] Analysis of MYC DNA binding sites by ChiP-Seq in 5 BurkittM-BM-4s lymphoma cell lines (Raji, Ramos, Blue1, BL41, CA46) [mRNA expression profiling] siRNA-mediated knock-down of MYC was done employing the BL cell lines Raji, BL41 and Blue1 in order to detect MYC-driven gene expression changes. For this purpose, the cells were Amaxa-transfected using MYC smart pool siRNA and control siRNA (Thermo Scientific/Dharmacon, Erembodegem, Belgium), respectively.
Project description:Background: MYC is a transcription factor encoded by the c-MYC gene (thereafter termed MYC). MYC is key transcription factor involved in many central cellular processes including ribosomal biogenesis. MYC is overexpressed in the majority of human tumours including aggressive B-cell lymphoma especially Burkitt's lymphoma. Although Burkitt's lymphoma is a highlight example for MYC overexpression due to a chromosomal translocation, no global analysis of MYC binding sites by chromatin immunoprecipitation (ChIP) followed by global next generation sequencing (ChIP-Seq) has been conducted so far in Burkitt's lymphoma. Methodology/Principal Findings: ChIP-Seq was performed with a MYC-specific antibody giving rise to 7,054 predicted MYC binding sites after bioinformatics analysis of a total of 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes and the cell cycle demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC binding sites also accumulate in genes typically expressed in mature B-cells. To assess the functional consequences of altered MYC binding, the ChIP-Seq data were supplemented with siRNA mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in B-cell function were up-regulated in response to MYC silencing. Conclusion/Significance: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in Burkitt's lymphoma and sheds further light on the enormous complexity of the MYC regulatory network. Especially our observation that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlights an interesting aspect of Burkitt´s lymphoma biology.
Project description:Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli and this protects long-lived organisms from cancer development. How cells discriminate physiological from supra-physiological levels of Myc is largely unknown. Here we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-sequencing experiments show that oncogenic levels of Myc, but not of MycV394D, a point mutant that does not bind Miz1, recruit Miz1 to core promoters and enable binding of Myc/Miz1 complexes to low-affinity target sites, correlating with repression of a specific set of target genes. Repressed genes encode proteins involved in cell adhesion, migration and wound healing; their promoters are enriched for binding sites of the serum response (SRF) factor. Restoring SRF activity attenuates Myc-induced apoptosis in response to glutamine starvation, exposure to Trail and to DNA damage. We propose that supra-physiological levels of Myc engage Miz1 in repressive DNA binding complexes and suppress transcriptional progress. MIZ1, MYC-ER and MYC-ERVD ChIP-Seq with 10E2 and HC20 anti-ERalpha antibodies in MCF10A cells, performed on an Illumina IIx Genome Analyzer. Input sample is accessioned as GSM1423726.
Project description:Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli and this protects long-lived organisms from cancer development. How cells discriminate physiological from supra-physiological levels of Myc is largely unknown. Here we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-sequencing experiments show that oncogenic levels of Myc, but not of MycV394D, a point mutant that does not bind Miz1, recruit Miz1 to core promoters and enable binding of Myc/Miz1 complexes to low-affinity target sites, correlating with repression of a specific set of target genes. Repressed genes encode proteins involved in cell adhesion, migration and wound healing; their promoters are enriched for binding sites of the serum response (SRF) factor. Restoring SRF activity attenuates Myc-induced apoptosis in response to glutamine starvation, exposure to Trail and to DNA damage. We propose that supra-physiological levels of Myc engage Miz1 in repressive DNA binding complexes and suppress transcriptional progress.