Gene expression in roots of slim1 and the parental line grown +/-S condition
Ontology highlight
ABSTRACT: Plants utilize soil sulfate for production of sulfur-containing amino acids that serve as essential dietary sulfur sources for animals. Despite the global nutritional significance of this fundamental metabolic process in nature, transcription factors regulating the plant sulfur assimilation pathways have never been discovered. We isolated sulfur limitation1 (slim1) mutants from Arabidopsis, showing abnormally low expression of SULTR1;2 sulfate transporter, by screening responsiveness of SULTR1;2 promoter-GFP, as an indicator, to sulfur limitation. SLIM1 encoded an EIL-family transcription factor, EIL3. To clarify the siganificance of SLIM1 function in sulfur responsive gene expression, we analyzed the transcriptome profiles in slim1-1, slim1-2 and the parental line under +S and -S conditions. Keywords: comparison of mutant and wild type, sulfur limitation response, nutritional stress response
Project description:Plants utilize soil sulfate for production of sulfur-containing amino acids that serve as essential dietary sulfur sources for animals. Despite the global nutritional significance of this fundamental metabolic process in nature, transcription factors regulating the plant sulfur assimilation pathways have never been discovered. We isolated sulfur limitation1 (slim1) mutants from Arabidopsis, showing abnormally low expression of SULTR1;2 sulfate transporter, by screening responsiveness of SULTR1;2 promoter-GFP, as an indicator, to sulfur limitation. SLIM1 encoded an EIL-family transcription factor, EIL3. To clarify the siganificance of SLIM1 function in sulfur responsive gene expression, we analyzed the transcriptome profiles in slim1-1, slim1-2 and the parental line under +S and -S conditions. Experiment Overall Design: PSULTR1;2-GFP, slim1-1 and slim1-2 were vertically grown on the +S/-S (S1500/S15) agar medium. Root tissues of 10-day-old plants were used for RNA extraction and hybridization on Affymetrix microarrays. All conditions were duplicated.
Project description:In this study, we combined metabolic reconstruction, growth assays, metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway and of thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, of at least one gene of the transsulfuration pathway (aecD) and of genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC9175 during sulfur starvation and in the presence of sulfate, cystine or methionine plus cystine. In sulfur starvation, 690 genes including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in presence of cysteine, while the expression of metX, metY, metE1, metE2 and BL613 encoding a probable cystathionine-γ-synthase decreased in the presence of methionine. We identified three ABC transporters: two stronger transcribed during cysteine limitation and one during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase, BL929, and a methionine transporter (metPS) was induced in the presence of methionine, in conjunction with a significant increase of volatile sulfur compounds production. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25418: BA-Methionine plus Cystine vs Cystine GSE25419: BA-Sulfate vs Cystine GSE25420: BA-Methionine plus Cystine vs Sulfate GSE25421: BA-Sulfate vs Sulfate starvation
Project description:In this study, we combined metabolic reconstruction, growth assays, metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway and of thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, of at least one gene of the transsulfuration pathway (aecD) and of genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC9175 during sulfur starvation and in the presence of sulfate, cystine or methionine plus cystine. In sulfur starvation, 690 genes including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in presence of cysteine, while the expression of metX, metY, metE1, metE2 and BL613 encoding a probable cystathionine-γ-synthase decreased in the presence of methionine. We identified three ABC transporters: two stronger transcribed during cysteine limitation and one during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase, BL929, and a methionine transporter (metPS) was induced in the presence of methionine, in conjunction with a significant increase of volatile sulfur compounds production. This SuperSeries is composed of the SubSeries listed below.
Project description:Sulfate is recognized as a primary sulfur source for plant growth and effects of thiosulfate as a sulfur source on plant growth and metabolism, gene expression have not been studied. We used microarrays to detail the global programme of gene expression in response to thiosulfate as a sulfur source.
Project description:Investigation of sulfur metabolism in Clostridium thermocellum DSM 1313 ∆hpt, to determine growth and gene expression when the organism is incubated with either the oxidized (i.e., sulfate) or the reduced and assimilated (i.e., cysteine) forms of sulfur. A sulfite reductase (∆hpt ∆SO3R) knockout mutant to limit sulfur assimilation was created to compare the resulting gene expression patterns by RNAseq transciptomics against the parental strain (∆hpt) when both are grown in the presence of sulfate. Additionally, we bypass the sulfate auxotrophy of the mutant by providing assimilated sulfur in the form of cysteine to determine whether growth is restored to normal and whether methionine can be biosynthesized by yet uncharacterized pathways in this organism.
Project description:We used the previously designed oligonucleotide-based microarray (Burgmann et al. Environmental Microbiology 2007, 9: 2742-2755) to detect the transcripts of R. pomeroyi DSS-3 genes when the cells were cultured under steady-state carbon (glucose), nitrogen (ammonium), phosphorus (phosphate), or sulfur (sulfate) limitation. A total of 14 mRNA samples were hybridized to the arrays (three biological replicates from glucose, ammonium, phosphate, or sulfate limitation and one technical replicate each for ammonium or sulfate limitation)
Project description:Sulfate in one essential nutrient for plants and its limitation is known to have a significant impact on plant growth and yield. In this study we performed global transcriptome analyses to investigate the responses to long term sulfate deficiency at the shoot level. The shoot global transcriptomic responses to sulfur deprivation.
Project description:Gene expression in response to changes in sulfur supply was studied in P. aeruginosa E601, a cystic fibrosis isolate that displays mucin sulfatase activity, and in P. aeruginosa PAO1. A large family of genes was found to be upregulated by sulfate limitation in both isolates, encoding sulfatases and sulfonatases, transport systems, oxidative stress proteins, and a sulfate-regulated TonB/ExbBD complex. These genes were localized in five distinct islands on the genome, and encoded proteins with a significantly reduced content of cysteine and methionine. Growth of P. aeruginosa E601 with mucin as sulfur source led to a sulfate starvation response, but also to induction of genes involved with type III secretion systems. Experiment Overall Design: Gene expression in exponential-phase cells was analysed using Affymetrix arrays. Sulfur was supplied either as sulfate, or as the non-sulfate S sources cyclamate (sodium cyclohexylsulfamate) and mucin (human colon cell line mucin LS174T). Control experiments were also done with combinations of these sulfur sources. Studies with mucin as sulfur source were carried out with P. aeruginosa E601 (a CF isolate with mucin sulfatase activity) and comparative studies were performed with P. aeruginosa PAO1. Experiments with strain E601 were done in 3-4 fold replication, experiments with strain PAO1 with 2-3 fold replication.
Project description:Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances in the green alga Chlamydomonas reinhardtii during sulfur starvation. The work confirms and extends upon previous findings showing that sulfur deprivation elicits changes in levels of transcripts for proteins that help scavenge sulfate and economize on the use of sulfur resources. Changes in levels of transcripts encoding members of the light-harvesting polypeptide family, such as LhcSR2, suggest restructuring of the photosynthetic apparatus during sulfur deprivation. There are also significant changes in levels of transcripts encoding enzymes involved in metabolic processes (e.g., carbon metabolism), intracellular proteolysis, and the amelioration of oxidative damage; a marked and sustained increase in mRNAs for a putative vanadium chloroperoxidase and a peroxiredoxin may help prolong survival of C. reinhardtii during sulfur deprivation. Furthermore, many of the sulfur stress-regulated transcripts (encoding polypeptides associated with sulfate uptake and assimilation, oxidative stress, and photosynthetic function) are not properly regulated in the sac1 mutant of C. reinhardtii, a strain that dies much more rapidly than parental cells during sulfur deprivation. Interestingly, sulfur stress elicits dramatic changes in levels of transcripts encoding putative chloroplast-localized chaperones in the sac1 mutant but not in the parental strain. These results suggest various strategies used by photosynthetic organisms during acclimation to nutrient-limited growth.
Project description:We used the previously designed oligonucleotide-based microarray (Burgmann et al. Environmental Microbiology 2007, 9: 2742-2755) to detect the transcripts of R. pomeroyi DSS-3 genes when the cells were cultured under steady-state carbon (glucose), nitrogen (ammonium), phosphorus (phosphate), or sulfur (sulfate) limitation.