DNA-damaging agent and immune inducer synergistically induced defence gene expression in Arabidopsis
Ontology highlight
ABSTRACT: We used microarrays to identify differentially expressed genes after DNA-damaging agent bleomycin (BLM) and/or immune inducer 2, 6-dichloroisonicotinic acid (INA) treatment. We focused on those genes that were synergistically induced by co-treatment (BLM+INA).
Project description:We used microarrays to identify differentially expressed genes after DNA-damaging agent bleomycin (BLM) and/or immune inducer 2, 6-dichloroisonicotinic acid (INA) treatment. We focused on those genes that were synergistically induced by co-treatment (BLM+INA). Arabidopsis seedlings were treated with 4 μg/ml BLM and/or low INA (10 μM). There are 4 treatments: control (CK), INA, BLM and BLM+INA. Each treatments have three biological replicates. There are 12 samples in total.
Project description:Wild type and sgs1 null yeast were grown under DNA damaging (with MMS) conditions or without treatment to log phase and their transcriptional profiles compared. The human aging diseases Werner and Bloom syndromes are a result of mutation of the WRN and BLM genes, respectively. The SGS1 gene of Saccharomyces cerevisiae is homologous to the human WRN and BLM genes of the RecQ DNA helicase family. Deletion of SGS1 results in accelerated yeast aging and a reduction in life span as well as cell cycle arrest. We demonstrate that SGS1 deletion, DNA damage, and stress show similar transcriptional responses in yeast. Our comparative analysis of the genome-wide expression response of SGS1 deletion, stress and DNA damage indicates parallel transcriptional responses to cellular insult and aging in yeast.
Project description:Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action. Microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 ug/ml Onconase for 24 h.
Project description:Tumor suppressor p53 plays an integral role in DNA damage-induced apoptosis, which is one of the biological processes to protect against tumor progression. Cell shape is dramatically changed undergoing apoptosis, which is often associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agent. We here show that p53 controls expression of myotonic dystrophy protein kinase (DMPK), which is known to upregulate actomyosin contraction. To identify a novel p53 regulating gene encoding the modulator of myosin, we performed a DNA microarray and then found that, in response to DNA-damaging agent doxorubicin, DMPK expression was increased in a p53-dependent manner.
Project description:Systemic sclerosis (SSc) is characterized by intractable multiorgan fibrosis caused by vascular and immune dysfunction. Currently, effective therapeutic options for patients with SSc are limited. Nitrate, an abundant nutrient in the diet, has been demonstrated to be preventative and therapeutic for several diseases. To determine whether nitrate can slow or reverse SSc progression, topical application of nitrate delivered by dissolving microneedles was used to treat a bleomycin (BLM)-induced dermal fibrosis mouse model. In this study, nitrate considerably attenuated dermal thickness, stiffness, and collagen deposition.To examine the nitrate regulation of gene expression at the genome-wide level, bulk RNA sequencing of skin was performed. Bulk RNA sequencing of skin revealed that Cd4 was a key hub gene in SSc nitrate therapy. Additionally, BLM-induced cytokines and chemokines were inhibited by nitrate, and CD4+ T cells infiltration markedly declined. Il4, Il6, Il13, and Tgfb expression in CD4+ T cells isolated from skin biopsies also significantly decreased. Mechanistically, Il1rl1, a type2 immune response inducer, was markedly repressed in isolated CD4+ T cells and dermal tissues after nitrate treatment. Remarkably, compared with wild type mice, mice lacking Il1rl1 showed impaired transcriptional profiles after intradermal BLM injection. Adoptive transfer of ST2+CD4+ T cells promoted bleomycin-induced Rag2-/- mice dermal fibrosis. Collectively, these findings demonstrate that nitrate targeting ST2+CD4+ T cells is an effective therapeutic option for SSc.
Project description:Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of TGFβ1 as the major player in the pathogenesis of the disease. This study designed novel human- and mouse-specific siRNAs and siRNA/DNA chimeras targeting both human and mouse common sequences and evaluated their inhibitory activity in pulmonary fibrosis induced by bleomycin and lung-specific transgenic expression of human TGFβ1. Selective novel sequences of siRNA and siRNA/DNA chimeras efficiently inhibited pulmonary fibrosis, indicating their applicability as tools for treating fibrotic disease in humans. Total RNA was extracted from lung tissue from mice with bleomycin (BLM)-induced lung fibrosis treated with mouse TGFβ1 siRNAs or vehicle on different days after BLM infusion.
Project description:Chemotherapy Treatment alone with DNA damaging drugs might be as effective as chemotherapy combined with surgery in colorectal cancer (CRC) avoiding surgery complications.