Project description:The responses of the transcriptome were monitored in Synechocysis PCC 6803 during a linear rate of evaporation of the culture to dryness (desiccation). For each time point, total RNA were isolated from stressed and unstressed cells, reverse-transcribed, differentially labelled (dye swapped), hybridized together (stressed versus unstressed samples) and analyzed with DNA glass microarrays (two slides per each time point) (Custom-commercial array : CyanoCHIP version 2.0, TAKARA). To identify differentially expressed genes, the median of the normalized ratio of Cy5/Cy3 intensity was calculated for each spot of the replicated dye-swap. The results of the analysis were carefully examined to exclude the dye effect between the 2 Cy-swapped arrays. Keywords: Dehydration, stress response, time course, transcription, cyanobacteria
Project description:The responses of the transcriptome of Synechocystis PCC 6803 to UV-irradiation were measured at time points over 36 h. Irradiation was provided by Sylvania soft white DuluzR compact fluorescent 23W bulbs (Osram Sylvania Ltd, Mississauga, Canada), a 20W RS UV-B medical light with a spectral maximum at 310 nm (model ‘TL’, Philips, Holland), and 15W black lights each with a spectral maximum at 368 nm (model F15T8-BL, General Electric, USA). Total quantum scalar irradiance was measured with a model QSL-100 meter (Biospherical Instruments Inc., San Diego, CA). The flux densities of the UV-A and UV-B components of the spectrum were measured with DIX series UV-B and 365A sensors, respectively, with a Spectroline DRC-100X digital radiometer (Spectronics Corporation, Westbury, NY). In these experiments full illumination represented a continuous photon flux density in the visible range of 330 μmol photons m-2 s-1, with UV-A and UV-B maxima of 3.8 x 10^6 and 0.8 x 10^6 mW m-2, respectively. All values reported were the incident fluxes within culture vessels at the immediate surface of the cell suspensions. Aliquot cultures (in duplicate) were harvested after 0, 15 min, 1 h, 3 h, 6 h, 12 h, 24 h and 36 h of UV-irradiation. For each time point, total RNA were isolated from stressed and unstressed cells, reverse-transcribed, differentially labelled (dye swapped), hybridized together (stressed versus unstressed samples) and analyzed with DNA glass microarrays (two slides per each time point) (Custom-commercial array : CyanoCHIP version 2.0, TAKARA). To identify differentially expressed genes, the median of the normalized ratio of Cy5/Cy3 intensity was calculated for each spot of the replicated dye-swap. The results of the analysis were carefully examined to exclude the dye effect between the 2 Cy-swapped arrays. Keywords: UV-irradiation, desiccation, Synechocystis PCC 6803, cyanobacteria, time course, transcription
Project description:This study focuses on Ultra Violet stress (UVS) gene product which is a UV stress induced protein from cyanobacteria, Synechocystis PCC 6803. Three dimensional structural modeling of target UVS protein was carried out by homology modeling method. 3F2I pdb from Nostoc sp. PCC 7120 was selected as a suitable template protein structure. Ultimately, the detection of active binding regions was carried out for characterization of functional sites in modeled UV-B stress protein. The top five probable ligand binding sites were predicted and the common binding residues between target and template protein was analyzed. It has been validated for the first time that modeled UVS protein structure from Synechocystis PCC 6803 was structurally and functionally similar to well characterized UVS protein of another cyanobacterial species, Nostoc sp PCC 7120 because of having same structural motif and fold with similar protein topology and function. Investigations revealed that UVS protein from Synechocystis sp. might play significant role during ultraviolet resistance. Thus, it could be a potential biological source for remediation for UV induced stress.
Project description:In recent years, there has been an increased interest in the research and development of sustainable alternatives to fossil fuels. Using photosynthetic microorganisms to produce such alternatives is advantageous, since they can achieve direct conversion of carbon dioxide from the atmosphere into the desired product, using sunlight as the energy source. Squalene is a naturally occurring 30-carbon isoprenoid, which has commercial use in cosmetics and in vaccines. If it could be produced sustainably on a large scale, it could also be used instead of petroleum as a raw material for fuels and as feedstock for the chemical industry. The unicellular cyanobacterium Synechocystis PCC 6803 possesses a gene, slr2089, predicted to encode squalene hopene cyclase (Shc), an enzyme converting squalene into hopene, the substrate for forming hopanoids. Through inactivation of slr2089 (shc), we explored the possibility to produce squalene using cyanobacteria. The inactivation led to accumulation of squalene, to a level over 70 times higher than in wild type cells, reaching 0.67 mg OD750(-1) L(-1). We did not observe any significant growth deficiency in the Δshc strain compared to the wild type Synechocystis, even at high light conditions, suggesting that the observed squalene accumulation was not detrimental to growth, and that formation of hopene by Shc is not crucial for growth under normal conditions, nor for high-light stress tolerance. Effects of different light intensities and growth stages on squalene accumulation in the Δshc strain were investigated. We also identified a gene, sll0513, as a putative squalene synthase in Synechocystis, and verified its function by inactivation. In this work, we show that it is possible to use the cyanobacterium Synechocystis to generate squalene, a hydrocarbon of commercial interest and a potential biofuel. We also report the first identification of a squalene hopene cyclase, and the second identification of squalene synthase, in cyanobacteria.
Project description:Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.
Project description:Synechocystis 6803 cells was grown photoautotrophically at 32 °C buffered in BG-11 and bubbled with 3% CO2. A relatively mild Ci stress was applied by switching the aeration from 3% CO2 to air alone. After incubation under designated conditions, a 100-ml aliquot of culture was immediately combined with an equal volume of ice-cold mixture of phenol and ethanol (1:10, w/v) in an ice bath. The resultant cells were collected by centrifugation at 1000 x g for 10 min at 4 °C. Total RNA was isolated with RNeasy Midi Kit (Qiagen, Valencia, CA) and further treated with the DNA-free kit (Ambion, Austin, TX). Fluorescently labeled cDNA was produced via a two-step indirect procedure involving cDNA synthesis from 16 µg of total RNA in a reverse transcriptase reaction incorporating aminoallyl-modified deoxynucleotide, followed by the second step involving chemical coupling of fluorescent dye to the introduced amino moieties of the synthesized cDNA. Labeled cDNA were adjusted to 14.75 µl, and the remainder of the hybridization components containing 2.5 µl of 10 µg µl-1 salmon sperm DNA, 8.75 µl of 20x SSC, 0.25 µl of 10% SDS, and 8.75 µl of formamide were added. The mixture was then heated for 2 min at 99 °C and maintained at 42 °C until hybridization. Hybridizations were preformed in a static incubator at 42 °C for 12-16 h then washed by placing in a 250-ml solution of 2x SSC and 0.1% SDS at 42 °C for 5 min with gentle agitation provided by rotation of a magnetic stir bar. The slide was transferred quickly to a 250-ml solution of 0.1x SSC and 0.1% SDS, incubated for 10 min at room temperature with gentle agitation, and washed five additional times in 0.1x SSC for 1 min at room temperature. Hybridization signals from the microarray were quantified using GenePix Pro 4.1 (Axon Instruments, Union City, CA). The quality control procedures were conducted in the image analysis software, and then data were saved to Acuity 3.1 (Axon Instruments). Keywords: time-course
Project description:We designed and constructed a controllable inducing lysis system in Synechocystis sp. PCC 6803 to facilitate extracting lipids for biofuel production. Several bacteriophage-derived lysis genes were integrated into the genome and placed downstream of a nickel-inducible signal transduction system. We applied 3 strategies: (i) directly using the phage lysis cassette, (ii) constitutively expressing endolysin genes while restricting holin genes, and (iii) combining lysis genes from different phages. Significant autolysis was induced in the Synechocystis sp. PCC 6803 cells with this system by the addition of NiSO(4). Our inducible cyanobacterial lysing system eliminates the need for mechanical or chemical cell breakage and could facilitate recovery of biofuel from cyanobacteria.
Project description:BackgroundMetabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene.ResultsThis study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine-Dalgarno sequence (5'-AGGAGG-3') as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (ΔglgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background.ConclusionMaking use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system.
Project description:It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well.
Project description:BACKGROUND:There are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity of cellular metabolism. Regulation and response mechanisms are largely unknown, and even the metabolic pathways themselves are not fully elucidated. This poses a clear limitation in exploiting the rich biosynthetic potential of cyanobacteria. RESULTS:In this work, we focused on the production of two different compounds, the cyanogenic glucoside dhurrin and the diterpenoid 13R-manoyl oxide in Synechocystis PCC 6803. We used genome-scale metabolic modelling to study fluxes in individual reactions and pathways, and we determined the concentrations of key metabolites, such as amino acids, carotenoids, and chlorophylls. This allowed us to identify metabolic crosstalk between the native and the introduced metabolic pathways. Most results and simulations highlight the metabolic robustness of cyanobacteria, suggesting that the host organism tends to keep metabolic fluxes and metabolite concentrations steady, counteracting the effects of the heterologous pathway. However, the amino acid concentrations of the dhurrin-producing strain show an unexpected profile, where the perturbation levels were high in seemingly unrelated metabolites. CONCLUSIONS:There is a wealth of information that can be derived by combining targeted metabolite identification and computer modelling as a frame of understanding. Here we present an example of how strain engineering approaches can be coupled to 'traditional' metabolic engineering with systems biology, resulting in novel and more efficient manipulation strategies.