Genome-wide association studies for sheep growth and meat production traits using Illumina OvineSNP50 BeadChip
Ontology highlight
ABSTRACT: Mear prodution is the most important trait for sheep. In this study, we performed a Genome-wide association study (GWAS) by using Illumina Ovine SNP50 BeadChip in 329 purebred sheep phenotyped for 11 growth and meat production traits (birth weight, weaning weight, 6-month weight, eye muscle area, fat thickness, pre-weaning gain, post-weaning gain, daily weight gain, height at withers , chest girth and shin circumference). A total of 319 sheep and 48,198 SNPs were fitted using TASSEL 3.0 software as random effects in a mixed linear model. 36 chromosome-wise significant SNPs were identified for 7 traits and 10 of them reached genome-wide significance level consistently for post-weaning gain. Gene annotation was implemented based on the latest version3.1 ovine genome sequence (released October 2012), and meanwhile we referenced genomic information of human, bovine, mouse and rat. More than one-third SNPs (14 out of 36) were located within ovine genes , some other were located close to ovine genes (878bp-398165bp apart).
Project description:Mear prodution is the most important trait for sheep. In this study, we performed a Genome-wide association study (GWAS) by using Illumina Ovine SNP50 BeadChip in 329 purebred sheep phenotyped for 11 growth and meat production traits (birth weight, weaning weight, 6-month weight, eye muscle area, fat thickness, pre-weaning gain, post-weaning gain, daily weight gain, height at withers , chest girth and shin circumference). A total of 319 sheep and 48,198 SNPs were fitted using TASSEL 3.0 software as random effects in a mixed linear model. 36 chromosome-wise significant SNPs were identified for 7 traits and 10 of them reached genome-wide significance level consistently for post-weaning gain. Gene annotation was implemented based on the latest version3.1 ovine genome sequence (released October 2012), and meanwhile we referenced genomic information of human, bovine, mouse and rat. More than one-third SNPs (14 out of 36) were located within ovine genes , some other were located close to ovine genes (878bp-398165bp apart). 329 sheep DNA were scanned using OvineSNP50 Beadchip and the association is done between the SNP data and 11 different meat prodution traits
Project description:Body weight (BW) is a critical economic trait for meat production in sheep. The current study aimed to perform a genome-wide association study (GWAS) to detect significant single-nucleotide polymorphisms (SNPs) that are associated with BW in Hu sheep.
Project description:Ovine mastitis is defined as the inflammation of the sheep udder, most commonly caused in response to intramammary infections. Based on the occurrence of clinical signs, mastitis is characterized as either clinical or subclinical (SCM). The impact of ovine SCM on the overall sustainability of dairy sheep farms has been documented underpinning the significance of efficient diagnosis. Although SCM can be detected in cows, the performance and the validity of the methods used do not transfer in dairy sheep. This fact challenges the development of evidence-based ovine udder health management protocols and renders the detection and control of ovine mastitis rather problematic. Currently, cell culture-based models are being successfully used in biomedical studies and have also been effectively used in the case of bovine mastitis. The objective of the present study was to culture ovine primary mammary cells for the development of 2D and 3D cell culture-based models for the study of ovine SCM. Cells were infected by mastitis-inducing pathogens mimicking the pathogenesis of SCM as derived by natural intramammary infections. The secreted proteins were subjected to mass-spectrometry resulting in the identification of 79 distinct proteins. Among those, several had already been identified in healthy or mastitic milk, while others were detected for the first time in the ovine mammary secretome. The development of cell-based models for the early detection and the overall study of SCM has the potential to be applicable and beneficial for the udder health management in dairy sheep.
Project description:Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies suggest it is a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep including 17 affected and 3 carriers. A homozygous region of 199 consecutive single-nucleotide polymorphism (SNP) loci was identified in all the affected sheep, covering a region of 10Mbp on ovine chromosome 6. Among 91 candidate genes in this region, exon 6 of the dentin matrix protein 1 gene (DMP1) was sequenced to reveal 9 SNPs including a nonsense mutation 253T/C which introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed that, all 17 affected sheep were “T T” genotypes and the 27 phenotypically normal sheep were either “C T” or “C C”. This locus is not in complete linkage disequilibrium with the other 8 SNPs that can all be ruled out as candidates. Previous research has shown that mutations in DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice also exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” alleles. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis
Project description:The metabolic syndrome (MetS) is a collection of co-occurring complex disorders including obesity, hypertension, dyslipidemia, and insulin resistance. The Lyon Hypertensive (LH) and Lyon Normotensive (LN) rats are models of MetS sensitivity and resistance, respectively. To identify genetic determinants and mechanisms underlying MetS, 169 rats from an F2 intercross between LH and LN were studied. Multi-dimensional data were obtained including genotypes of 1536 SNPs, 23 physiological traits including blood pressure, plasma lipid and leptin levels, and body weight/adiposity, and more than 150 billion nucleotides of RNA-seq reads from the livers of 36 F2 individuals, 6 LH and 6 LN individuals. We identified 17 pQTLs (physiological quantitative trait loci) and 1200 eQTLs (gene expression quantitative trait loci). Systems biology methods were applied to identify 18 candidate MetS genes, including genes (Prcp and Aqp11) previously shown to be MetS-related. We found an eQTL hotspot on RNO17, which was also located within pQTLs for MetS-related traits. The genes regulated by this eQTL hotspot were mainly in two co-expression network modules (a mitochondria related module and a gene regulation related module) and were predicted to causally affect many MetS-related traits. Multiple evidences strongly and consistently support RGD1562963, a gene regulated in cis by this eQTL hotspot and possibly related to RNA stability, as the eQTL driver gene directly affected by genetic variation between LH and LN rats; the expression of this gene is also correlated with MetS-related traits. Our study sheds light on the intricate pathogenesis of MetS and proved that systems biology with high-throughput sequencing is a powerful method to study the etiology of complicated diseases. RNA-Seq of the liver of 6 LH (Lyon Hypertensive) rats and 6 LN (Lyon Normotensive) rats and 36 F2 rats.
Project description:Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies suggest it is a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep including 17 affected and 3 carriers. A homozygous region of 199 consecutive single-nucleotide polymorphism (SNP) loci was identified in all the affected sheep, covering a region of 10Mbp on ovine chromosome 6. Among 91 candidate genes in this region, exon 6 of the dentin matrix protein 1 gene (DMP1) was sequenced to reveal 9 SNPs including a nonsense mutation 253T/C which introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed that, all 17 affected sheep were “T T” genotypes and the 27 phenotypically normal sheep were either “C T” or “C C”. This locus is not in complete linkage disequilibrium with the other 8 SNPs that can all be ruled out as candidates. Previous research has shown that mutations in DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice also exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” alleles. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep including 17 affected and 3 carriers to define homozygous regions with consecutive single-nucleotide polymorphism (SNP) loci only existing in all the affected sheep. Fine mapping was conducted by screening coding regions and splicing regions on the positional candidate genes within the homozygous regions by using more sheep
Project description:Infection of sheep with Brucella ovis results in ovine brucellosis, a disease characterized by infertility in rams, abortion in ewes and increased perinatal mortality in lambs. During the course of the infection both the ovine immune response and host cell gene expression are modified. The objective of this research was to conduct a preliminary characterization of differential gene expression in rams experimentally infected with B. ovis by microarray hybridization and real-time RT-PCR. Six hybridizations were conducted using total RNA from three individual infected sheep at 15 and 60 days post infection. In each comparison, the control channels contained total RNA from each of the same three sheep at 0 days post infection. Ratios were calculated as B. ovis-infected sheep at 15 and 60 dpc versus uninfected animals at 0 dpc.
Project description:Transcriptional profiling of Ovine skin samples comparing pigmentation samples from piebald and normal Merino sheep All pair comparison of 5 pigmentation samples with dye swaps. Dye swaps were performed with different biological replicates (labelled 1 or 2) NOR - White sample from a normal, non-affected wild-type individual sheep PBB - Black sample from a piebald individual sheep PBW - White sample from a piebald individual sheep RSB - Black sample from a recessive black sheep RSW - White sample from a recissive black sheep taken from the inguinal, non-pigmented area.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of different ovine muscle's transcriptomes. 9.27 gigabases of sequence from two different breeds of sheep.