Transcriptomics

Dataset Information

0

AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder


ABSTRACT: Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenine and guanine nucleotides. We describe a new early-onset distinct neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new potentially treatable early-onset neurodegenerative disease.

ORGANISM(S): Homo sapiens

PROVIDER: GSE46615 | GEO | 2013/12/01

SECONDARY ACCESSION(S): PRJNA202092

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-12-01 | E-GEOD-46615 | biostudies-arrayexpress
2024-07-24 | GSE265772 | GEO
2024-07-06 | GSE271411 | GEO
2017-03-20 | GSE95216 | GEO
2021-04-17 | GSE167374 | GEO
2013-10-01 | E-GEOD-51277 | biostudies-arrayexpress
2013-10-01 | GSE51277 | GEO
2022-04-27 | GSE197728 | GEO
2011-07-11 | GSE29324 | GEO
2021-03-12 | PXD020399 | panorama