Comparison of the translational program in oocytes from wild type and Areg KO mice
Ontology highlight
ABSTRACT: The study tests the hypothesis that maternal mRNA translation in oocytes is sensitive to the environment in which the oocytes mature. Amphiregulin (AREG) is a critical signal for oocyte maturation but also for oocyte developmental competence. Here we have used a genome-wide approach to determine whether the oocyte translational program is affected when oocytes mature in vivo in the absence of AREG. To this aim, polysome arrays were used to define patterns of transcript recruitment to the polysomes in oocytes derived from wild type mice and mice homozygous null for the Areg gene.
Project description:The study tests the hypothesis that maternal mRNA translation in oocytes is sensitive to the environment in which the oocytes mature. Amphiregulin (AREG) is a critical signal for oocyte maturation but also for oocyte developmental competence. Here we have used a genome-wide approach to determine whether the oocyte translational program is affected when oocytes mature in vivo in the absence of AREG. To this aim, polysome arrays were used to define patterns of transcript recruitment to the polysomes in oocytes derived from wild type mice and mice homozygous null for the Areg gene. Forty-eight hours (h) after PMSG injection, mice were stimulated with hCG for 0, or 14 h, and GV, and MII stage oocytes were collected. Polysome bound mRNAs were purified, reverse-transcribed and linearly amplified with WT-Ovation FFPE RNA Amplification System V2 (NuGEN). 5µg cDNA were fragmented and hybridized with Affymetrix Mouse Genome 430.2 array chips. Experiments were done using 3 independent sample sets.
Project description:Cumulus cells are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The bi-directional communication between the oocyte and the surrounding cumulus cells is crucial for the acquisition of oocyte competence. Using Illumina/deep-sequencing technology, we dissected the small RNAome of pooled human mature MII oocytes and cumulus cells. Cumulus cells and MII mature oocytes small RNA profiles were generated by deep-sequencing, using Illumina 1G sequencer
Project description:Oocyte developmental potential is progressively obtained as females approach puberty. Therefore, oocytes derived from prepubertal females are less developmentally competent, indicated by decreased embryonic development, compared to oocytes derived from adult females. To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: oocyte developmental competence, maternal age Porcine oocytes obtained from prepubertal and adult females were collected for RNA extraction and hybridization on Affymetrix microarrays. Oocytes were aspirated from 2 to 6 mm ovarian follicles and matured in vitro. Analysis of the first extruded polar body ensured that all oocytes used in the analyses had completed nuclear maturation.
Project description:Cumulus cells are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The bi-directional communication between the oocyte and the surrounding cumulus cells is crucial for the acquisition of oocyte competence. Using Illumina/deep-sequencing technology, we dissected the small RNAome of pooled human mature MII oocytes and cumulus cells.
Project description:Oocyte developmental potential is progressively obtained as females approach puberty. Therefore, oocytes derived from prepubertal females are less developmentally competent, indicated by decreased embryonic development, compared to oocytes derived from adult females. To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: oocyte developmental competence, maternal age
Project description:Expression data from prepubertal, peripubertal, and adult derived mouse oocytes, and from germinal vesicle (GV), in vivo matured, and in vitro matured mouse oocytes. Oocytes derived from prepubertal females, or oocytes matured in vitro, are less developmentally competent compared to adult derived, or in vivo matured, oocytes, indicated by decreased embryonic development. One potential mechanism for decreased developmental potetential in prepubertal or in vitro matured oocytes is inadequate or inappropriate RNA degradation during oocyte maturation (progression from GV to MII). To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: Oocyte developmental competence
Project description:Expression data from prepubertal, peripubertal, and adult derived mouse oocytes, and from germinal vesicle (GV), in vivo matured, and in vitro matured mouse oocytes. Oocytes derived from prepubertal females, or oocytes matured in vitro, are less developmentally competent compared to adult derived, or in vivo matured, oocytes, indicated by decreased embryonic development. One potential mechanism for decreased developmental potetential in prepubertal or in vitro matured oocytes is inadequate or inappropriate RNA degradation during oocyte maturation (progression from GV to MII). To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: Oocyte developmental competence The study encompassed three experimental designs using female B6D2F1 mice: 1) In vitro matured oocytes were obtained from d20 (prepubertal), d26 (peripubertal), and 7-8 wk old (adult) mice; 2) in vivo and in vitro matured oocytes were obtained from d26 mice; and 3) GV, in vivo matured, and in vitro matured oocytes were obtained from 7-8 wk old mice. RNA was extracted from pools of 150 oocytes and hybridized onto the Affymetrix microarrays.
Project description:The success of human reproduction relies on high quality oocytes. Oocyte quality is manifested by the competence to complete meiosis, to be fertilized, and to support embryonic development. This meiotic and developmental competence is gradually established during the course of oocyte and follicle development, and is determined in large part by the autonomous gene expression program intrinsic to the oocyte. In order to explore the regulatory role of LSM14B in oocyte, we analyzed the effect of Lsm14b KO on gene expression in GV-stage fully-grown oocytes (FGOs) in mice by comparing the corresponding transcriptomes via RNA-Seq Analysis.
Project description:Although it is well established that the ovarian reserve diminishes with increasing age, and that a woman’s age is correlated to lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activation (EGA) relies on maternal RNA and proteins. Age and ovarian reserve both affects oocyte developmental competence, however, their relative importance in this process are difficult to tease out, as ageing is accompanied by a decrease in ovarian reserve. Oocytes store large quantities of RNA, including several noncoding transcripts (ncRNAs) involved in early development transcription and translation modulation. Despite the central role of ncRNAs in maternal to zygote transition, no characterization of the ncRNA transcriptome in human oocytes has been reported. This study aims at identifying how the human oocyte transcriptome changes across reproductive ages and ovarian reserve levels, with the goal of identifying candidate markers of developmental competence, and to assess the independent relevance of age and ovarian reserve in the changes of the transcriptome
Project description:Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured (IVM) oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species (ROS). In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10−9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome-wide expression analysis of genes affected by melatonin during oocyte maturation was conducted by high-throughput scRNA sequencing. We found that several important genes altered by melatonin were involved in oocyte stress defense. These genes included GSTP1, mitochondrial DNA polymerase POLG, mitochondrial ATP synthase ATP5E, centriole-enriched gene CEP295, spindle assembly-related gene TCTP, cytoprotection, and anti-apoptosis-related gene HSP27. Our results indicated critical roles of melatonin during bovine oocyte maturation and development.