Effect of vitamin D on gene expression in human alveolar type II cells
Ontology highlight
ABSTRACT: To test whether vitamin D has a functionally important effect upon primary alveolar epithelial type II cells we used gene expression microarray to identify genes that are regulated by 25-dihydroxyvitamin D in adult alveolar type II cells.
Project description:Previous reports have shown low vitamin D serum levels and polymorphisms in the vitamin D receptor (VDR) to be associated with increased risk for TB. Given that 1α,25-dihydroxyvitamin D3 has a role in lipid metabolism control, we tested whether the link between 1α,25-dihydroxyvitamin D3 and tuberculosis involves macrophage lipid metabolism. Since formation of lipid droplets (LD) is a hallmark of lipid dysregulation in M. tuberculosis-infected macrophages, we measured LD content as a readout of altered lipid metabolism in infected THP-1 cells. Induction of LD, which peaked by 24 hours post-infection was prevented by addition of 1α,25-dihydroxyvitamin D3 at the time of infection. To investigate the mechanism of 1α,25-dihydroxyvitamin D3 modulation of LD formation, we analyzed the transcriptome of M. tuberculosis-infected THP-1 cells with and without 1α,25-dihydroxyvitamin D3 treatment.
Project description:Previous reports have shown low vitamin D serum levels and polymorphisms in the vitamin D receptor (VDR) to be associated with increased risk for TB. Given that 1?,25-dihydroxyvitamin D3 has a role in lipid metabolism control, we tested whether the link between 1?,25-dihydroxyvitamin D3 and tuberculosis involves macrophage lipid metabolism. Since formation of lipid droplets (LD) is a hallmark of lipid dysregulation in M. tuberculosis-infected macrophages, we measured LD content as a readout of altered lipid metabolism in infected THP-1 cells. Induction of LD, which peaked by 24 hours post-infection was prevented by addition of 1?,25-dihydroxyvitamin D3 at the time of infection. To investigate the mechanism of 1?,25-dihydroxyvitamin D3 modulation of LD formation, we analyzed the transcriptome of M. tuberculosis-infected THP-1 cells with and without 1?,25-dihydroxyvitamin D3 treatment. THP-1 cells were cultured in 24-well flat bottom plates, pre-treated with 20ng/ml PMA for 24 h, and incubated with M. tuberculosis H37Rv. After 4 hours of infection, cells were washed to remove extracellular bacteria and treated with 100 nM of 1?,25-dihydroxyvitamin D3. THP-1 cells were collected and analyzed at 24h. 3 biological replicates in each of the 4 groups were prepared: Infected, Infected plus 1?,25-dihydroxyvitamin D3, Non-infected, Non-infected plus 1?,25-dihydroxyvitamin D3.
Project description:The objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation. In this study, we obtained alveolar macrophages by bronchoalveolar lavage of subjects before and after a 3 month vitamin D trial. RNA for the array was obtained shortly after bronchoscopy. Randomized Controlled Trial: This is a substudy of paired samples of subjects treated with vitamin D. Each sample was studied once. 22 individuals were studied.
Project description:Low serum levels or deficiency of 1α,25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or acute respiratory distress syndrome, although the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation and pulmonary surfactant synthesis. This study aims to expand the knowledge by quantitative characterization of NCI-H441 cells upon VD3 treatment at the proteome level.
Project description:Pregnancy 25-hydroxyvitamin D (25(OH)D) concentrations are associated with maternal and fetal health outcomes, but the underlying mechanisms have not been elucidated. Using physiological human placental perfusion approaches and intact villous explants we demonstrate a role for the placenta in regulating the relationships between maternal 25(OH)D concentrations and fetal physiology. Here, we demonstrate active placental uptake of 25(OH)D3 by endocytosis and placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the fetal and maternal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than solely the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer, including transcriptional activation and inflammatory responses. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta; with widespread effects on the placenta itself. These data show complex and synergistic interplay between vitamin D and the placenta, and inform possible interventions to optimise placental function to better support fetal growth and the maternal adaptations to pregnancy.
Project description:Pregnancy 25-hydroxyvitamin D (25(OH)D) concentrations are associated with maternal and fetal health outcomes, but the underlying mechanisms have not been elucidated. Using physiological human placental perfusion approaches and intact villous explants we demonstrate a role for the placenta in regulating the relationships between maternal 25(OH)D concentrations and fetal physiology. Here, we demonstrate active placental uptake of 25(OH)D3 by endocytosis and placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the fetal and maternal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than solely the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer, including transcriptional activation and inflammatory responses. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta; with widespread effects on the placenta itself. These data show complex and synergistic interplay between vitamin D and the placenta, and inform possible interventions to optimise placental function to better support fetal growth and the maternal adaptations to pregnancy.
Project description:Pregnancy 25-hydroxyvitamin D (25(OH)D) concentrations are associated with maternal and fetal health outcomes, but the underlying mechanisms have not been elucidated. Using physiological human placental perfusion approaches and intact villous explants we demonstrate a role for the placenta in regulating the relationships between maternal 25(OH)D concentrations and fetal physiology. Here, we demonstrate active placental uptake of 25(OH)D3 by endocytosis and placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the fetal and maternal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than solely the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer, including transcriptional activation and inflammatory responses. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta; with widespread effects on the placenta itself. These data show complex and synergistic interplay between vitamin D and the placenta, and inform possible interventions to optimise placental function to better support fetal growth and the maternal adaptations to pregnancy.
Project description:The objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation. In this study, we obtained alveolar macrophages by bronchoalveolar lavage of subjects before and after a 3 month vitamin D trial. RNA for the array was obtained shortly after bronchoscopy.
Project description:Comparison of rat freshly-isolated alveolar epithelial type I cells, freshly-isolated type II cells, and type II cells cultured for 7 days Keywords = rat, alveolar epithelial type I cells, cultured type II cells Keywords: parallel sample
Project description:In this study, we focused on the time-course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) compared to vehicle (0.1% EtOH).