Xist exploits three-dimensional chromosome architecture to spread across the X-chromosome
Ontology highlight
ABSTRACT: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. Here we investigate the localization mechanisms of Xist during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X-chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X-chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X-chromosome. Xist initially accumulates on the periphery of actively transcribed regions and requires its silencing domain to spread across active regions. This suggests a model where Xist coats the entire X-chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.
ORGANISM(S): Mus musculus
PROVIDER: GSE46918 | GEO | 2013/05/30
SECONDARY ACCESSION(S): PRJNA203042
REPOSITORIES: GEO
ACCESS DATA