Other

Dataset Information

0

Whole-genome Haplotype Reconstruction using Proximity-ligation and Shotgun Sequencing


ABSTRACT: Rapid advances in high-throughput DNA sequencing technologies are accelerating the pace of research into personalized medicine. While methods for variant discovery and genotyping from whole genome sequencing (WGS) datasets have been well established, linking variants together into a single haplotype remains a challenge. An understanding of complete haplotypes of an individual will help clarify the consequences of inheriting multiple alleles in combination, identify novel disease associations, and augment studies of gene regulation. Although numerous methods have been developed to reconstruct haplotypes from WGS data, chromosome-span haplotypes at high resolution have been difficult to obtain. Here we present a novel method to accurately reconstruct chromosome-span haplotypes from proximity-ligation and DNA shotgun sequencing. We demonstrate the utility of this approach in producing high-resolution chromosome-span haplotype phasing in mouse and human. While proximity-ligation based methods were originally designed to investigate spatial organization of the genome, our results lend support for their use as a general tool for haplotyping in the future.

ORGANISM(S): Mus musculus Homo sapiens

PROVIDER: GSE48592 | GEO | 2013/11/03

SECONDARY ACCESSION(S): PRJNA210760

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-11-03 | E-GEOD-48592 | biostudies-arrayexpress
2016-02-01 | E-GEOD-65726 | biostudies-arrayexpress
2015-02-18 | GSE52457 | GEO
2015-02-18 | E-GEOD-52457 | biostudies-arrayexpress
2010-07-28 | E-GEOD-23205 | biostudies-arrayexpress
2015-08-12 | GSE70181 | GEO
2012-06-01 | E-GEOD-34867 | biostudies-arrayexpress
2016-02-01 | GSE65726 | GEO
2015-08-12 | E-GEOD-70181 | biostudies-arrayexpress
2017-07-07 | GSE83403 | GEO