Escape from X chromosome inactivation occurs within topologically associated domains
Ontology highlight
ABSTRACT: The spatial proximity between regulatory elements and their target genes has a profound affect on gene expression. X Chromosome Inactivation (XCI) is an epigenetic process by which an entire chromosome is rendered, for the most part, transcriptionally silent. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophectodermal stem cells, we address whether specific chromosomal interactions facilitate escape from XCI by bringing escape-specific regulatory elements in close proximity to gene promoters. Our results suggest a model where escape from XCI occurs within topologically associated domains. As such, escaping genes and the regulatory sequences required for their escape are likely located within close linear proximity to each other. The datasets provided include those generated from allele-specific 4C-Seq of genes escaping XCI, genes subject to XCI, and non-genic regions of the X chromosome. FASTQ files, text files containing genomic coordiantes, and BED aligmnets are provided. All sequences were mapped relative to mouse genome build mm9.
ORGANISM(S): Mus musculus
PROVIDER: GSE49111 | GEO | 2014/03/26
SECONDARY ACCESSION(S): PRJNA213024
REPOSITORIES: GEO
ACCESS DATA