Project description:Deep sequencing of mRNA from Spalax galili and Rattus norvegicus Total RNAs were isolated from the brain of female BMRs under various oxygen concentrations (3%, 6%, 10%, 14%, and 21%) for 6 hours. We also got RNAs from the brain of rats under 6%, 10%, 14%, and 21% oxygen conditions.
Project description:Background: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified. We investigated the genetic difference between Spalax and mice that might enable the Spalax relative resistance to cancer development. We compared Spalax and mice responses to a treatment with the carcinogen 3-Methylcholantrene, as a model to assess Spalax’ cancer-resistance. Results: We compared RNA-Seq data of untreated Spalax to Spalax with a tumor and identified a high number of differentially expressed genes. We filtered these genes by their expression in tolerant Spalax that resisted the 3MCA, and in mice, and found 25 genes with a consistent expression pattern in the samples susceptible to cancer among species. Contrasting the expressed genes in Spalax with benign granulomas to those in Spalax with malignant fibrosarcomas elucidated significant differences in several pathways, mainly the extracellular matrix and the immune system. We found a central cluster of ECM genes that differ greatly between conditions. Further analysis of these genes revealed potential drug targets and associated microRNAs. We also show that in Spalax has higher levels of gene expression of some DNA repair pathways than other murines, like the majority of Fanconi Anemia pathway. Conclusion: The comparison of the treated with the untreated tissue revealed a regulatory complex that might give an answer how Spalax is able to restrict the tumor growth. By strengthening the extracellular matrix, the possible growth is limited, and the proliferation of cancer cells was prevented. We hypothesize that this regulatory cluster plays a major role in the cancer resistance of Spalax. Furthermore, we identified 25 additional candidate genes that show a distinct expression pattern in untreated or tolerant Spalax compared to animals that developed a growth, either benign or malignant. While further study is necessary, we believe that these genes may be used as markers in cancer detection.
Project description:Background: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified. We investigated the genetic difference between Spalax and mice that might enable the Spalax relative resistance to cancer development. We compared Spalax and mice responses to a treatment with the carcinogen 3-Methylcholantrene, as a model to assess Spalax’ cancer-resistance. Results: We compared RNA-Seq data of untreated Spalax to Spalax with a tumor and identified a high number of differentially expressed genes. We filtered these genes by their expression in tolerant Spalax that resisted the 3MCA, and in mice, and found 25 genes with a consistent expression pattern in the samples susceptible to cancer among species. Contrasting the expressed genes in Spalax with benign granulomas to those in Spalax with malignant fibrosarcomas elucidated significant differences in several pathways, mainly the extracellular matrix and the immune system. We found a central cluster of ECM genes that differ greatly between conditions. Further analysis of these genes revealed potential drug targets and associated microRNAs.We also show that in Spalax has higher levels of gene expression of some DNA repair pathways than other murines, like the majority of Fanconi Anemia pathway. Conclusion: The comparison of the treated with the untreated tissue revealed a regulatory complex that might give an answer how Spalax is able to restrict the tumor growth. By strengthening the extracellular matrix, the possible growth is limited, and the proliferation of cancer cells was prevented. We hypothesize that this regulatory cluster plays a major role in the cancer resistance of Spalax. Furthermore, we identified 25 additional candidate genes that show a distinct expression pattern in untreated or tolerant Spalax compared to animals that developed a growth, either benign or malignant. While further study is necessary, we believe that these genes may be used as markers in cancer detection.
Project description:Major urinary proteins (MUP) are the major component of the urinary protein fraction in house mice (Mus spp.) and rats (Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse (Mus musculus domesticus), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicus. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Detailed sequencing of the urinary MUP isoforms reveals a less complex pattern of primary sequence polymorphism in the rat than the mouse. However, rat MUPs exhibit added complexity in the form of post-translational modifications, including the phosphorylation of Ser4 in some isoforms, and exoproteolytic trimming of specific isoforms.
Project description:The aim of this project is to use an integrated approach involving TMT labeling and LC-MS/MS to quantify the dynamic changes of the whole proteome of chondrocytes of Rattus norvegicus.