Genomics

Dataset Information

0

The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres


ABSTRACT: Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have a ~10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO, and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.

ORGANISM(S): Oryza sativa

PROVIDER: GSE50755 | GEO | 2013/11/06

SECONDARY ACCESSION(S): PRJNA218812

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-11-06 | E-GEOD-50755 | biostudies-arrayexpress
2011-12-07 | E-GEOD-28298 | biostudies-arrayexpress
2011-12-07 | GSE28298 | GEO
2015-09-23 | E-GEOD-65889 | biostudies-arrayexpress
2014-04-08 | E-GEOD-44412 | biostudies-arrayexpress
| PRJNA218812 | ENA
2011-10-26 | E-GEOD-30551 | biostudies-arrayexpress
2014-04-08 | GSE44412 | GEO
2018-01-08 | GSE105100 | GEO
2015-08-17 | GSE64294 | GEO