Holocentromeres are dispersed point centromeres localized at transcription factor hotspots
Ontology highlight
ABSTRACT: The centromere is a defining feature of eukaryotic chromosomes and is essential for the segregation of chromosomes during cell division. Centromeres are universally marked by the histone variant cenH3 and are restricted to specialized chromatin that most commonly localized to a single position along the chromosome. However, the DNA on which centromeric nucleosomes assemble is not conserved and varies greatly in size and composition. It ranges from genetically defined point centromeres that assemble a single cenH3-containing nucleosome to epigenetically defined regional centromeres embedded in megabases of tandemly repeated DNA to holocentromeres that extend along the length of the entire chromosomes. The organization of regional and holocentric centromeres has so far been elusive, as the precise locations of cenH3-containing sequences could not be determined. Our results show that the point centromere is the basic unit of holocentromeres and provide a basis for understanding how centromeric chromatin is maintained.
Project description:The centromere is a defining feature of eukaryotic chromosomes and is essential for the segregation of chromosomes during cell division. Centromeres are universally marked by the histone variant cenH3 and are restricted to specialized chromatin that most commonly localized to a single position along the chromosome. However, the DNA on which centromeric nucleosomes assemble is not conserved and varies greatly in size and composition. It ranges from genetically defined point centromeres that assemble a single cenH3-containing nucleosome to epigenetically defined regional centromeres embedded in megabases of tandemly repeated DNA to holocentromeres that extend along the length of the entire chromosomes. The organization of regional and holocentric centromeres has so far been elusive, as the precise locations of cenH3-containing sequences could not be determined. Our results show that the point centromere is the basic unit of holocentromeres and provide a basis for understanding how centromeric chromatin is maintained. We use high-resolution mapping of cenH3-associated DNA to show that Caenorhabditids elegans holocentromeres are organized as dispersed but discretely localized point centromeres.
Project description:Accurate chromosome segregation requires centromeres (CENs), the chromosomal sites where kinetochores form, to bridge DNA and attach to microtubules. In contrast to most eukaryotes, Saccharomyces cerevisiae possesses sequence-defined point centromeres. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of four kinetochore components reveals regions of overlapping, extra-centromeric protein localization upon overproduction of the centromeric histone, Cse4 (CENP-A or CenH3). These identified sequences enhance proper plasmid and chromosome segregation, and are termed Centromere-like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of point and regional centromeres. CLR sequences are conserved among related budding yeasts, suggesting a role in vivo. These studies provide new insights into the origin and evolution of centromeres.
Project description:Accurate chromosome segregation requires centromeres (CENs), the chromosomal sites where kinetochores form, to bridge DNA and attach to microtubules. In contrast to most eukaryotes, Saccharomyces cerevisiae possesses sequence-defined point centromeres. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of four kinetochore components reveals regions of overlapping, extra-centromeric protein localization upon overproduction of the centromeric histone, Cse4 (CENP-A or CenH3). These identified sequences enhance proper plasmid and chromosome segregation, and are termed Centromere-like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of point and regional centromeres. CLR sequences are conserved among related budding yeasts, suggesting a role in vivo. These studies provide new insights into the origin and evolution of centromeres. ChIP-Seq analysis of the kinetochore components Cse4, Mif2, Ndc10 and Ndc80 in budding yeast strains (Saccharomyces cerevisiae) with normal and elevated levels of Cse4
Project description:Despite the essentiality for faithful chromosome segregation, centromere architectures are diverse among eukaryotes and embody two main configurations: mono- and holocentromeres, referring respectively to localized or unrestricted distribution of centromeric activity. Of the two, some holocentromeres offer the curious condition of having arisen independently in multiple insects, most of which have lost the otherwise essential centromere-specifying factor CenH3 (first described as CENP-A in humans). The loss of CenH3 raises intuitive questions about how holocentromeres are organized and regulated in CenH3-lacking insects. Here, we report the first chromatin-level description of CenH3-deficient holocentromeres by leveraging recently-identified centromere components and genomics approaches to map and characterize the holocentromeres of the silk moth Bombyx mori, a representative lepidopteran insect lacking CenH3. This uncovered a robust correlation between the distribution of centromere sites and regions of low chromatin activity along B. mori chromosomes. Transcriptional perturbation experiments recapitulated the exclusion of B. mori centromeres from active chromatin. Based on reciprocal centromere occupancy patterns observed along differentially-expressed orthologous genes of Lepidoptera, we further found that holocentromere formation in a manner that is recessive to chromatin dynamics is evolutionarily conserved. Our results help us discuss the plasticity of centromeres in the context of a role for the chromosome-wide chromatin landscape in conferring centromere identity rather than the presence of CenH3. Given the co-occurrence of CenH3 loss and holocentricity in insects, we further propose that the evolutionary establishment of holocentromeres in insects was facilitated through the loss of a CenH3-specified centromere.
Project description:Specification and propagation of the centromeres of eukaryotic chromosomes is determined by epigenetic mechanisms. Unfortunately, the epigenetic characteristics of centromeric DNA and chromatin are difficult to define because the centromeres are composed of highly repetitive DNA sequences in most eukaryotic species. Several rice centromeres have been fully sequenced, making rice an excellent model for centromere research. We conducted genome-wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The DNA sequences in the core domains of rice Cen4, Cen5, and Cen8 showed elevated methylation levels compared to the sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3-binding subdomains compared to the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared to the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3-associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin. mCIP-seq of one sample of rice seedling
Project description:Centromeres typically contain repeat sequences, but centromere function does not necessarily depend on these sequences. In aneuploid wheat (Triticum aestivum) and wheat distant hybridization offspring, we found functional centromeres with dramatic changes to centromeric retrotransposon of wheat (CRW) sequences. CRW sequences were greatly reduced in the ditelosomic lines 1BS, 5DS, 5DL, and a wheat-Thinopyrum elongatum addition line. CRWs were completely lost in the ditelosomic line 4DS, but a 994 kb ectopic genomic DNA sequence was involved in de novo centromere formation on the 4DS chromosome. In addition, two ectopic sequences were incorporated in a de novo centromere in a wheat-Th. intermedium addition line. Centromeric sequences were also expanded to the chromosome arm in wide hybridizations. Stable alien chromosomes with two and three regions containing centromeric sequences were found in wheat-Th. elongatum hybrid derivatives, but only one is functional. In wheat-rye (Secale cereale) hybrids, rye centromere specific sequences spread to the chromosome arm and may cause centromere expansion. Thus, distant wheat hybridizations cause frequent and significant changes to the centromere via centromere misdivision, which may affect retention or loss of alien chromosomes in hybrids. ChIP-seq was carried out with anti-CENH3 antibody using material 4DS and control (Chinese Spring, CS as short).
Project description:De novo centromeres originate occasionally from non-centromeric regions of chromosomes, providing an excellent model system to study centromeric chromatin. The maize mini-chromosome Derivative 3-3 contains a de novo centromere, which was derived from a euchromatic site on the short arm of chromosome 9 that lacks traditional centromeric repeat sequences. Our previous study found that the CENH3 binding domain of this de novo centromere is only 288 kb with a high-density gene distribution with low-density of transposons. Here we applied next generation sequencing technology to analyze gene transcription, DNA methylation for this region. Our RNA-seq data revealed that active chromatin is not a barrier for de novo centromere formation. Bisulfite-ChIP-seq results indicate a slightly increased DNA methylation level after de novo centromere formation, reaching the level of a native centromere. These results provide insight into the mechanism of de novo centromere formation and subsequent consequences. RNA-seq was carried out using material from seedling and young leaves between control and Derivative 3-3. Bisulfite-ChIP-seq was carried out with anti-CENH3 antibodies using material from young leaves in Derivative 3-3.
Project description:De novo centromeres originate occasionally from non-centromeric regions of chromosomes, providing an excellent model system to study centromeric chromatin. The maize mini-chromosome Dp3a contains a de novo centromere, which was derived from a euchromatic site on the long arm of chromosome 3 that lacks traditional centromeric repeat sequences. Our previous study found that the CENH3 binding domain of this de novo centromere is only 350 kb with a high-density gene distribution with low-density of transposons. Here we analyzed the kinetochore complex assembled on the de novo centromere, which revealed that it resembles the native centromeres. Meiotic analyses showed that the Dp3a mini-chromosome formed bi-orientation during meiosis I and could stably transmit through meiosis. We applied next generation sequencing technology to analyze gene transcription, DNA methylation and histone modifications for this region. Our RNA-seq data revealed that active chromatin is not a barrier for de novo centromere formation. The gene expression level within the Dp3a breakpoints of native chromosome 3 indicated a gene dosage effect due to the additional copy of Dp3a mini-chromosome region in chromosome 3. Bisulfite-ChIP-seq results indicate a slightly increased DNA methylation level after de novo centromere formation, reaching the level of a native centromere. No strand-specific bias of DNA methylation was found at maize native and Dp3a de novo centromeres. H2A-T133 phosphorylation occurs in the CENH3 nucleosome. These results provide insight into the mechanism of de novo centromere formation and subsequent consequences.
Project description:Specification and propagation of the centromeres of eukaryotic chromosomes is determined by epigenetic mechanisms. Unfortunately, the epigenetic characteristics of centromeric DNA and chromatin are difficult to define because the centromeres are composed of highly repetitive DNA sequences in most eukaryotic species. Several rice centromeres have been fully sequenced, making rice an excellent model for centromere research. We conducted genome-wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The DNA sequences in the core domains of rice Cen4, Cen5, and Cen8 showed elevated methylation levels compared to the sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3-binding subdomains compared to the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared to the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3-associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.
Project description:The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq of SA1, SA2, and Rad21 in human cells demonstrates that cohesin subunits are depleted in -satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin.