Lysine-Specific Demethylase 1 Has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity
Ontology highlight
ABSTRACT: Lysine Specific Demethylase 1 (LSD1, KDM1A) functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4), but has coactivator function on some genes through unclear mechanisms. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR) on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph), and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and has a distinct AR-linked coactivator function mediated by demethylation of other substrates.
ORGANISM(S): Homo sapiens
PROVIDER: GSE52201 | GEO | 2014/12/12
SECONDARY ACCESSION(S): PRJNA230632
REPOSITORIES: GEO
ACCESS DATA