Evaluation of DNA-binding preferences of C2H2 zinc finger domains by PBM
Ontology highlight
ABSTRACT: The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. Using the bacterial 1-hybrid (B1H) system, we determined DNA-binding motifs for thousands of individual natural C2H2-ZFs, and correlated them with C2H2-ZF specificity residues. The data reported here includes results of protein-binding microarray (PBM) assays for 146 of these natural C2H2-ZFs, performed in order to validate B1H assays and to explore the DNA-binding specificity of C2H2-ZFs.
ORGANISM(S): synthetic construct
PROVIDER: GSE52520 | GEO | 2015/02/17
SECONDARY ACCESSION(S): PRJNA229160
REPOSITORIES: GEO
ACCESS DATA