Early SIV infection and effects of pathogenic and commensal enteric bacteria on expression in ileum tissue
Ontology highlight
ABSTRACT: We used the ileal loop model to assess the effects of enteric bacteria organisms on host gene expression in intestinal tissue independent of and following early SIV infection. SIV infection in the gut causes rapid and severe immune dysfunction and damage to the intestinal structure, this may alter the intimate interaction with lumenal organisms. This study was performed to determine whether early SIV infection, prior to the depletion of CD4+ T cells, can alter interaction of the host with pathogenic Salmonella serovar Typhimurium (ST) or commensal Lactobacillus plantarum (LP), and to further understand the earliest changes to the intestinal mucosa following SIV infection. We used microarray analysis to detail the global program of gene expression underlying changes in the ileum following early SIV infection, and if these changes in any way alter the host interaction/ response to pathogenic and commensal enteric bacteria.
Project description:We used the ileal loop model to assess the effects of enteric bacteria organisms on host gene expression in intestinal tissue independent of and following early SIV infection. SIV infection in the gut causes rapid and severe immune dysfunction and damage to the intestinal structure, this may alter the intimate interaction with lumenal organisms. This study was performed to determine whether early SIV infection, prior to the depletion of CD4+ T cells, can alter interaction of the host with pathogenic Salmonella serovar Typhimurium (ST) or commensal Lactobacillus plantarum (LP), and to further understand the earliest changes to the intestinal mucosa following SIV infection. We used microarray analysis to detail the global program of gene expression underlying changes in the ileum following early SIV infection, and if these changes in any way alter the host interaction/ response to pathogenic and commensal enteric bacteria. A subset of animals were infected with SIVmac251 for 2.5 days, following which they underwent a loop surgery where the ileum was sectioned off with surgical ties and bacteria (ST or LP) or their respective media controls (LB or MRS) were injected intralumenally. Following 5 hours of incubation the loops were excised and frozen. Tissue sections were cut and RNA extracted for gene expression analysis. Rhesus Macaques infected with SIVmac251 for 2.5 days compared to uninfected controls. Comparisons are of ileum loop sections injected with Salmonella serovar Typhimurium, Lactobacillus Plantarum or respective media controls LB or MRS.
Project description:Salmonella enterica serotype Typhimurium cause a localized enteric infection in immunocompetent patients while human immunodeficiency virus (HIV)-infected patients develop a life threatening bacteremia. We used a rhesus macaque ileal loop model to study how simian immunodeficiency virus (SIV) infection triggers defects in mucosal barrier function that enhance S. Typhimurium dissemination. SIV infection resulted in significant depletion of CD4+ T cells in the intestinal mucosa. Gene expression profiling revealed a defective TH17 response (with suppression of IL-17 and IL-22 expression) and impaired homeostasis of the intestinal epithelium in SIV-infected animals during NTS infection. These findings correlated with an impaired ability of lamina propria CD4+ T cells from SIV-infected macaques to produce IL-17 upon ex vivo stimulation, while production of IFNï§ was not affected. This cytokine imbalance in SIV-infected animals was associated with reduced expression of genes required for intestinal epithelial maintenance and repair, increased fluid secretion during NTS infection, epithelial damage and translocation of a non-invasive S. Typhimurium mutant. Although no defects in neutrophil recruitment were noted, the ileum of SIV-infected animals contained lower levels of the enzyme myeloperoxidase, which may indicate defects in neutrophil killing capacity. S. Typhimurium was recovered in markedly increased numbers from the mesenteric lymph nodes of SIV-infected macaques, illustrating the increased potential for systemic dissemination during co-infection. Our data suggest that SIV-infection causes a multi-factorial defect in mucosal barrier function that promotes bacterial dissemination. Keywords: Disease state analysis Comparison of ileal gene expression profiles in SIV infected rhesus macaques in response to Salmonella challange.
Project description:<p>This UH2/UH3 demonstration project entitled "Effects of Crohn's disease risk alleles on enteric microbiota" is focused on characterizing intestinal associated microbiota in patients with ileal Crohn's disease (ileal CD), ulcerative colitis (UC) and control patients without inflammatory bowel diseases (non-IBD). We hypothesize that genetic factors that affect Paneth cell function, contribute to compositional changes in intestinal microbiota. These changes in microbiota may lead to reduction of protective commensal organisms and increased numbers of aggressive organisms that incite intestinal inflammation. This hypothesis is being tested by high throughput 16S rRNA sequence analysis of de-identified ileal and colonic tissues that have been archived at Washington University St. Louis, University of North Carolina, Mount Sinai Hospital and the Cleveland Clinic. Multivariate analysis of the metagenomic data will be conducted with genotyping metadata (highly reproducible CD risk alleles, including NOD2 and ATG16L1) and phenotyping metadata (e.g. age, gender, race, body mass index, medications and smoking.)</p> <p>Shotgun sequencing will be performed on selected fecal specimens linked to ileal tissues to identify additional, or auxiliary, or synergistic pathogenic factors or other functional changes in the microbiome. Because members of this research team have observed that a chronic viral infection is required for the Paneth cell defect in Atg16l1 hypomorphic mice, a major focus of these studies will be towards identifying potential viral triggers for the defective Paneth cell phenotype in individuals harboring the ATG16L1 risk allele. Novel genetic probes for protective and aggressive organisms will be developed by mining bacterial genome and shotgun sequencing data. Genomic sequences will be produced for candidate protective and aggressive strains (e.g. adherent-invasive strains of E. coli) isolated from human intestinal tissues where there is limited existing genome information. Quantitative qPCR assays using the novel as well as established genetic probes will be conducted to test the hypothesis that an imbalance between protective and aggressive organisms is associated with genetic factors that affect Paneth cell function.</p> <p>Our combined expertise in multiple disciplines across multiple institutions, our demonstrated ability to collect a large number of well-phenotyped samples with longitudinal clinical information that will be linked to host response and morphologic studies, and our consortium's capacity for high-throughput sequencing will be used to investigate how alterations in human microbiome relate to CD risk alleles and CD pathogenesis.</p>
Project description:Salmonella enterica serotype Typhimurium cause a localized enteric infection in immunocompetent patients while human immunodeficiency virus (HIV)-infected patients develop a life threatening bacteremia. We used a rhesus macaque ileal loop model to study how simian immunodeficiency virus (SIV) infection triggers defects in mucosal barrier function that enhance S. Typhimurium dissemination. SIV infection resulted in significant depletion of CD4+ T cells in the intestinal mucosa. Gene expression profiling revealed a defective TH17 response (with suppression of IL-17 and IL-22 expression) and impaired homeostasis of the intestinal epithelium in SIV-infected animals during NTS infection. These findings correlated with an impaired ability of lamina propria CD4+ T cells from SIV-infected macaques to produce IL-17 upon ex vivo stimulation, while production of IFN-gamma was not affected. This cytokine imbalance in SIV-infected animals was associated with reduced expression of genes required for intestinal epithelial maintenance and repair, increased fluid secretion during NTS infection, epithelial damage and translocation of a non-invasive S. Typhimurium mutant. Although no defects in neutrophil recruitment were noted, the ileum of SIV-infected animals contained lower levels of the enzyme myeloperoxidase, which may indicate defects in neutrophil killing capacity. S. Typhimurium was recovered in markedly increased numbers from the mesenteric lymph nodes of SIV-infected macaques, illustrating the increased potential for systemic dissemination during co-infection. Our data suggest that SIV-infection causes a multi-factorial defect in mucosal barrier function that promotes bacterial dissemination. Keywords: Disease state analysis
Project description:We report the human intestinal epithelial host transcriptional response to human enteric virus infection using primary human intestinal enteroids cultures as a model system.
Project description:Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces IL-6-triggered inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. An elimination of CNFY, however, increases inter-feron-γ-mediated responses, comprising non-inflammatory antimicrobial activities and Ido1-promoted tolerogenesis. This process is accompanied by a preterm reprogram-ming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses. These results have significant implica-tions for our understanding how enteric bacteria establish a commensal-type life style.
Project description:The potential for commensal microorganisms indigenous to a host (the microbiome or microbiota) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics systems approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium's lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.
Project description:Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2 a/c + CD8 + T cells increase in blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2 a/c + CD8 + T cells were not expanded in lymph nodes and CXCR5 + NKG2 a/c + CD8 + T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2 a/c + CD8 + T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, immunoregulatory and gut barrier function, including CD73. NKG2 a/c + CD8 + T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2 a/c + CD8 + T cells in intestinal inflammation during SIV/HIV infections.
Project description:Following genital HSV-1 infection in mice, virus spreads to and infects the sensory neurons of the dorsal root ganglia (DRG) and the enteric neurons situated within the large intestinal musculara (LIM). We used RNA sequencing to simultaneously study the host and viral transcriptomes at these two distinct sites of infection. We find that transcription across the HSV-1 genome is weak and incomplete in sensory neurons whereas all known HSV-1 coding genes are robustly expressed in the enteric neurons. Furthermore, a T cell activation signature dominated the immune response to HSV-1 infection in the DRG. In contrast, an innate inflammatory signature was observed in the LIM.
Project description:The potential for commensal microorganisms indigenous to a host (the microbiome or microbiota) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics systems approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimuriums lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.