Impact of 5-Aza-2`-deoxycytidine and Epigallocatechin-3-gallate for induction of human regulatory T cells
Ontology highlight
ABSTRACT: The epigenetic regulation of transcription factor genes is critical for T cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and required for stable expression of FOXP3 and suppressive function. We analyzed the impact of hypomethylating agents 5-Aza-2`-deoxycytidine and Epigallocatechin-3-gallate (EGCG) on human CD4+CD25- T for generating Treg cell specific DNA methylation pattern within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage specifying transcription factors of the major T cell lineages and their leading cytokines, functional properties and global transcriptome changes were analyzed. 5-Aza-2`-deoxycytidine induced FOXP3-TSDR methylation and expression of Treg cell specific genes FOXP3 and LRRC32. Proliferation of 5-Aza-2´deoxycytidine treated cells was reduced, but they did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of Th1 and Th17 cells were induced. EGCG induced global DNA hypomethylation to a lower degree than 5-Aza-2´deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg cell specific genes. Both DNMT inhibitors did not induce full functional human Treg cells. Although 5-Aza-2`-deoxycytidine treated cells phenotypically appeared to be Treg cells, they did not suppress proliferation of responder cells, which is an essential capability to be used in Treg cell transfer therapy.
ORGANISM(S): Homo sapiens
PROVIDER: GSE53448 | GEO | 2013/12/19
SECONDARY ACCESSION(S): PRJNA232036
REPOSITORIES: GEO
ACCESS DATA