Type I IFN responses in rhesus macaques prevent SIV transmission and slow disease progression
Ontology highlight
ABSTRACT: In acute HIV infection immune activation may provide target cells and drive virus replication, which innate immunity may limit. Thus, the net effects of inflammatory mediators, including type I interferon (IFN-I), are unclear. Here, we block IFN-I signaling during pathogenic acute SIV infection with an IFN-I receptor antagonist. Delayed antiviral gene expression, increased SIV reservoir, increased CD4 T cell depletion and accelerated progression to AIDS and death ensue despite decreased T cell activation. In contrast, IFNα2a treatment initially upregulates antiviral genes and prevents systemic SIV infection after rectal challenge. Antiviral gene expression normalizes, and infection ensues with fewer transmitted/founder variants. Continued IFNα2a treatment causes delayed antiviral gene expression, increased SIV reservoir and increased CCR5+ CD4 T cell loss. Thus, the precise timing of antiviral gene expression has a profound impact on disease course. The benefits of early antiviral activity outweigh the harms of increased immune activation in acute SIV infection.
ORGANISM(S): Macaca mulatta
PROVIDER: GSE53690 | GEO | 2014/07/23
REPOSITORIES: GEO
ACCESS DATA